Advertisement

Ionics

pp 1–9 | Cite as

MOF-derived hollow cage Ni–Co mixed oxide/CNTs nanocomposites with enhanced electrochemical performance for lithium–sulfur batteries

  • Miaomiao Li
  • Wangjun FengEmail author
  • Wenxiao Su
  • Changkun Song
  • Lingjin Cheng
Original Paper
  • 57 Downloads

Abstract

Reasonable design of the cathode host material can effectively improve the electrochemical performance of lithium–sulfur batteries. In this work, a metal-organic framework (MOF)–based strategy was used to synthesize nanocomposites containing carbon nanotubes and nickel-cobalt mixed metal oxide (denoted as Ni–Co oxide/CNTs). The Ni–Co oxide/CNTs/S cathode exhibits excellent electrochemical performance, the high discharge capacity of 1421.7 mAh g-1 at 0.1 C. This means that the porous Ni–Co oxide interacts well with excellent conductivity CNTs to improve battery performance; indicate that the Ni–Co oxide/CNTs /S is a potential host for the high capacity and cyclic stability lithium–sulfur batteries.

Keywords

Ni–co oxide/CNTs/S nanocomposites Sulfur cathode Lithium–sulfur battery 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (Grant No.11264023).

References

  1. 1.
    Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  2. 2.
    Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234CrossRefGoogle Scholar
  3. 3.
    Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120:2079–2086CrossRefGoogle Scholar
  4. 4.
    Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic Electropolymerization for high-performance flexible Electr ode. ACS Nano 3:1745–1752CrossRefGoogle Scholar
  5. 5.
    Yin Y-X, Xin S, Guo Y-G, Wan L-J (2013) Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200CrossRefGoogle Scholar
  6. 6.
    Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21:803–807CrossRefGoogle Scholar
  7. 7.
    Wu W, Pu J, Wang J, Shen Z, Tang H, Deng Z, Tao X, Pan F, Zhang H (2018) Biomimetic bipolar microcapsules derived from Staphylococcus aureus for enhanced properties of lithium-sulfur battery cathodes. Adv Energy Mater 8:1702373CrossRefGoogle Scholar
  8. 8.
    Xu K, Li S, Yang J, Hu J (2018) Hierarchical hollow MnO2 nanofibers with enhanced supercapacitor performance. J Colloid Interface Sci 513:448–454CrossRefGoogle Scholar
  9. 9.
    Jiang D, Zheng M, You Y, Ma L, Liu P, Li F, Yuan H, Zhai Z, Ma L, Shen W (2018) NiO/NixCo3−xO4 porous ultrathin nanosheet/nanowire composite structures as high-performance supercapacitor electrodes. RSC Adv 8:31853–31859CrossRefGoogle Scholar
  10. 10.
    Jayakumar A, Antony RP, Wang R, Lee J-M (2017) MOF-derived hollow cage cage NixCo3−xO4 and their synergy with graphene for outstanding supercapacitors. Small 13:1603102CrossRefGoogle Scholar
  11. 11.
    Hong JY, Jung Y, Park D-W, Chung S, Kim S (2018) Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells. Electrochim Acta 259:1021–1029CrossRefGoogle Scholar
  12. 12.
    Zhang W, Jiang X, Wang X, Kaneti YV, Chen Y, Liu J, Jiang J-S, Yamauchi Y, Hu M (2017) Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed 56:8435–8440CrossRefGoogle Scholar
  13. 13.
    Xu Y, Hou S, Yang G, Wang X, Lu T, Pan L (2018) Synthesis of bimetallic NixCo1-xP hollow nanocages from metal-organic frameworks for high performance hybrid supercapacitors. Electrochim Acta 285:192–201CrossRefGoogle Scholar
  14. 14.
    Yi H, Wang H, Jing Y, Peng T, Wang X (2015) Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J Power Sources 285:281–290CrossRefGoogle Scholar
  15. 15.
    Xue B, Li K, Gu S, Lu J (2018) Zeolitic imidazolate frameworks (ZIFs)-derived NixCo3−xO4/CNTs nanocomposites with enhanced electrochemical performance for supercapacitor. J Colloid Interface Sci 530:233–242CrossRefGoogle Scholar
  16. 16.
    Cao M-S, Yang J, Song W-L, Zhang D-Q, Wen B, Jin H-B, Hou Z-L, Yuan J (2012) Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater Interfaces 4:6949–6956CrossRefGoogle Scholar
  17. 17.
    Chen Y-Z, Wang C, Wu Z-Y, Xiong Y, Xu Q, Yu S-H, Jiang H-L (2015) From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv Mater 27:5010–5016CrossRefGoogle Scholar
  18. 18.
    Park S-K, Yang SH, Kang YC (2018) Rational design of metal-organic framework-templated hollow NiCo2O4 polyhedrons decorated on macroporous CNT microspheres for improved lithium-ion storage properties. Chem Eng J 349:214–222CrossRefGoogle Scholar
  19. 19.
    Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhao D, Mai L (2017) General oriented formation of carbon nanotubes from metal–organic frameworks. J Am Chem Soc 139:8212–8221CrossRefGoogle Scholar
  20. 20.
    Su W (2018) Porous honeycomb-like carbon prepared by a facile sugar- blowing method for high-performance lithium-sulfur batteries. Int J Electrochem Sci 13:6005–6014Google Scholar
  21. 21.
    Luo Y, Xu X, Zhang Y, Chen C-Y, Zhou L, Yan M, Wei Q, Tian X, Mai L (2016) Graphene oxide templated growth and superior lithium storage performance of novel hierarchical Co2V2O7 nanosheets. ACS Appl Mater Interfaces 8:2812–2818CrossRefGoogle Scholar
  22. 22.
    Yuan C, Wu HB, Xie Y, Lou XWD (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504CrossRefGoogle Scholar
  23. 23.
    Gao G, Wu HB, Dong B, Ding S, Lou XWD (2015) Growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties. Adv Sci 2:1400014CrossRefGoogle Scholar
  24. 24.
    Hong YJ, Cho JS, Kang YC (2015) Superior electrochemical properties of nanofibers composed of hollow CoFe2O4 nanospheres covered with onion-like graphitic carbon. Chem Eur J 21:18202–18208CrossRefGoogle Scholar
  25. 25.
    Zhao R, Liang Z, Zou R, Xu Q (2018) Metal-organic frameworks for batteries. Joule 2:2235–2259CrossRefGoogle Scholar
  26. 26.
    Hu H, Guan BY, Lou XW(D) (2016) Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 1:102–113CrossRefGoogle Scholar
  27. 27.
    He P, Yu X-Y, Lou XWD (2017) Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem 129:3955–3958CrossRefGoogle Scholar
  28. 28.
    He X, Luan SZ, Wang L, Wang RY, Du P, Xu YY, Yang HJ, Wang YG, Huang K, Lei M (2019) Facile loading mesoporous Co3O4 on nitrogen doped carbon matrix as an enhanced oxygen electrode catalyst. Mater Lett 244:78–82CrossRefGoogle Scholar
  29. 29.
    Yu D, Wu B, Ge L, Wu L, Wang H, Xu T (2016) Decorating nanoporous ZIF-67-derived NiCo2O4 shells on a Co3O4 nanowire array core for battery-type electrodes with enhanced energy storage performance. J Mater Chem A 4:10878–10884CrossRefGoogle Scholar
  30. 30.
    Cao Y (2017) Bio-synthesis of LiFePO4/C composites for lithium ion battery. Int J Electrochem Sci 12:9084–9093Google Scholar
  31. 31.
    Yang H, Geng L, Zhang Y, Chang G, Zhang Z, Liu X, Lei M, He Y (2019) Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell. Appl Surf Sci 466:385–392CrossRefGoogle Scholar
  32. 32.
    Wang H, Liu R, Li Y, Lü X, Wang Q, Zhao S, Yuan K, Cui Z, Li X, Xin S, Zhang R, Lei M, Lin Z (2018) Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2:337–348CrossRefGoogle Scholar
  33. 33.
    Kim JK, Park GD, Kim JH, Park S-K, Kang YC (2017) Rational design and synthesis of extremely efficient macroporous CoSe2-CNT composite microspheres for hydrogen evolution reaction. Small 13:1700068CrossRefGoogle Scholar
  34. 34.
    Park GD, Kim JH, Park S-K, Kang YC (2017) MoSe2 embedded CNT-reduced graphene oxide composite microsphere with superior sodium ion storage and electrocatalytic hydrogen evolution performances. ACS Appl Mater Interfaces 9:10673–10683CrossRefGoogle Scholar
  35. 35.
    Yang D-H, Zhou X, Zhong M, Zhou Z, Bu X-H (2017) A robust hybrid of SnO2 nanoparticles sheathed by N-doped carbon derived from ZIF-8 as anodes for Li-Ion batteries. ChemNanoMat 3:252–258CrossRefGoogle Scholar
  36. 36.
    Tan G, She L, Liu T, Xu C, Ren H, Xia A (2017) Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity. Appl Catal B Environ 207:120–133CrossRefGoogle Scholar
  37. 37.
    Ye Y, Yang H, Wang X, Feng W (2018) Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater Sci Semicond Process 82:14–24CrossRefGoogle Scholar
  38. 38.
    Kim J-G, Pugmire DL, Battaglia D, Langell MA (2000) Analysis of the NiCo2O4 spinel surface with auger and X-ray photoelectron spectroscopy. Appl Surf Sci 165:70–84CrossRefGoogle Scholar
  39. 39.
    Rakap M, Özkar S (2009) Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Appl Catal B Environ 91:21–29CrossRefGoogle Scholar
  40. 40.
    Wang H, Zhou L, Han M, Tao Z, Cheng F, Chen J (2015) CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane. J Alloys Compd 651:382–388CrossRefGoogle Scholar
  41. 41.
    Cui B, Lin H, Liu Y, Li J, Sun P, Zhao X, Liu C (2009) Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets. J Phys Chem C 113:14083–14087CrossRefGoogle Scholar
  42. 42.
    Huang Y, Fan W, Long B, Li H, Qiu W, Zhao F, Tong Y, Ji H (2016) Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature. J Mater Chem A 4:3648–3654CrossRefGoogle Scholar
  43. 43.
    Yu M, Ma J, Xie M, Song H, Tian F, Xu S, Zhou Y, Li B, Wu D, Qiu H, Wang R (2017) Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries. Adv Energy Mater 7:1602347CrossRefGoogle Scholar
  44. 44.
    Cai W, Li G, Luo D, Xiao G, Zhu S, Zhao Y, Chen Z, Zhu Y, Qian Y (2018) The dual-play of 3D conductive scaffold embedded with co, N codoped hollow polyhedra toward high-performance Li-S full cell. Adv Energy Mater 8:1802561CrossRefGoogle Scholar
  45. 45.
    Yu M, Ma J, Song H, Wang A, Tian F, Wang Y, Qiu H, Wang R (2016) Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy Environ Sci 9:1495–1503CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Miaomiao Li
    • 1
    • 2
  • Wangjun Feng
    • 1
    • 2
    Email author
  • Wenxiao Su
    • 2
  • Changkun Song
    • 2
  • Lingjin Cheng
    • 2
  1. 1.State Key Laboratory of Advanced Processing and Recycling Nonferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouChina

Personalised recommendations