Advertisement

Ionics

pp 1–8 | Cite as

Carbon-decorated flower-like ZnO as high-performance anode materials for Li-ion batteries

  • Yanhuai DingEmail author
  • Jinlei Sun
  • Xing Liu
Original Paper
  • 40 Downloads

Abstract

As a potential anode material for Li-ion batteries, ZnO has been intensively studied owing to its high theoretical capacity and low cost. However, low electronic conductivity restricted the application of ZnO in Li-ion batteries. It has been well recognized that morphology-controlled ZnO nanostructures can serve as high-performance anode materials. Here carbon-decorated flower-like ZnO nanostructures have been synthesized by microwave-assisted hydrothermal reactions. The carbon decoration on the flower-like ZnO surface not only suppresses the growth of ZnO crystals but also increases the electronic conductivity of ZnO. The results indicate that the nanocarbon-decorated flower-like ZnO materials can be employed as high-performance anode materials for advanced Li storage.

Keywords

ZnO/C Anode Microwave-assisted hydrothermal reactions Electrochemical performance 

Notes

Acknowledgements

The financial support from the National Natural Science Foundation of China (No. 51002128), Scientific Research Foundation of Hunan Provincial Education Department (No.17A205), and Natural Science Foundation of Hunan Province (No. 2018JJ2393 and 2018JJ2394) is greatly acknowledged. Besides, Y.H.D sincerely appreciates the kind support from Mrs. Ding and brings her ‘ZnO’ flowers for the birthday.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

Supplementary material

11581_2019_2981_MOESM1_ESM.pdf (502 kb)
ESM 1 (PDF 501 kb)

References

  1. 1.
    Tang X, Chen H, Ding Y (2019) Mechanical properties of double-layered borophene with Li-storage. Mater Res Express 6(3):035010CrossRefGoogle Scholar
  2. 2.
    Ding Y-H, Zhang P (2012) Effect of Mg and Co co-doping on electrochemical properties of LiFePO4. Trans Nonferrous Metals Soc China 22:s153–s156.  https://doi.org/10.1016/S1003-6326(12)61701-4 CrossRefGoogle Scholar
  3. 3.
    Xiang HF, Li ZD, Xie K, Jiang JZ, Chen JJ, Lian PC, Wu JS, Yu Y, Wang HH (2012) Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv 2(17):6792–6799.  https://doi.org/10.1039/C2RA20549A CrossRefGoogle Scholar
  4. 4.
    Lu P, Sun Y, Xiang H, Liang X, Yu Y (2018) 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater 8(8):1702434.  https://doi.org/10.1002/aenm.201702434 CrossRefGoogle Scholar
  5. 5.
    Chen Y, Lu Z, Zhou L, Mai Y-W, Huang H (2012) Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy Environ Sci 5(7):7898–7902.  https://doi.org/10.1039/C2EE22085G CrossRefGoogle Scholar
  6. 6.
    Li X, Chen Y, Huang H, Mai Y-W, Zhou L (2016) Electrospun carbon-based nanostructured electrodes for advanced energy storage – a review. Energy Storage Mater 5:58–92.  https://doi.org/10.1016/j.ensm.2016.06.002 CrossRefGoogle Scholar
  7. 7.
    Li X, Fu N, Zou J, Zeng X, Chen Y, Zhou L, Lu W, Huang H (2017) Ultrafine cobalt sulfide nanoparticles encapsulated hierarchical N-doped carbon nanotubes for high-performance lithium storage. Electrochim Acta 225:137–142.  https://doi.org/10.1016/j.electacta.2016.12.127 CrossRefGoogle Scholar
  8. 8.
    Chen H, Zhang W, Tang X-Q, Ding Y-H, Yin J-R, Jiang Y, Zhang P, Jin H (2018) First principles study of P-doped borophene as anode materials for lithium ion batteries. Appl Surf Sci 427:198–205.  https://doi.org/10.1016/j.apsusc.2017.08.178 CrossRefGoogle Scholar
  9. 9.
    Gupta A, Dhakate SR, Gurunathan P, Ramesha K (2017) High rate capability and cyclic stability of hierarchically porous tin oxide (IV)–carbon nanofibers as anode in lithium ion batteries. Appl Nanosci 7(7):449–462.  https://doi.org/10.1007/s13204-017-0577-8 CrossRefGoogle Scholar
  10. 10.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496.  https://doi.org/10.1038/35035045
  11. 11.
    Yang Z, Ding Y, Jiang Y, Zhang P, Jin H (2018) Hierarchical C/SiOx/TiO2 ultrathin nanobelts as anode materials for advanced lithium ion batteries. Nanotechnology 29(40):405602CrossRefGoogle Scholar
  12. 12.
    Ren HM, Ding YH, Chang FH, He X, Feng JQ, Wang CF, Jiang Y, Zhang P (2012) Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries. Appl Surf Sci 263:54–57.  https://doi.org/10.1016/j.apsusc.2012.08.107 CrossRefGoogle Scholar
  13. 13.
    Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56(12):4532–4539.  https://doi.org/10.1016/j.electacta.2011.01.126 CrossRefGoogle Scholar
  14. 14.
    Zhao N, Wang G, Huang Y, Wang B, Yao B, Wu Y (2008) Preparation of nanowire arrays of amorphous carbon nanotube-coated single crystal SnO2. Chem Mater 20(8):2612–2614.  https://doi.org/10.1021/cm703353y CrossRefGoogle Scholar
  15. 15.
    Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ (2013) Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett 13(12):6136–6143.  https://doi.org/10.1021/nl403461n CrossRefGoogle Scholar
  16. 16.
    Li F, Shangguan E, Li J, Li L, Yang J, Chang Z, Li Q, Yuan X-Z, Wang H (2015) Influence of annealing temperature on the structure and electrochemical performance of the Fe3O4 anode material for alkaline secondary batteries. Electrochim Acta 178:34–44.  https://doi.org/10.1016/j.electacta.2015.07.106 CrossRefGoogle Scholar
  17. 17.
    Chae C, Kim KW, Yun YJ, Lee D, Moon J, Choi Y, Lee SS, Choi S, Jeong S (2016) Polyethylenimine-mediated electrostatic assembly of MnO2 nanorods on graphene oxides for use as anodes in lithium-ion batteries. ACS Appl Mater Interfaces 8(18):11499–11506.  https://doi.org/10.1021/acsami.6b01931 CrossRefGoogle Scholar
  18. 18.
    Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364–5457.  https://doi.org/10.1021/cr3001884 CrossRefGoogle Scholar
  19. 19.
    Xu G-L, Li Y, Ma T, Ren Y, Wang H-H, Wang L, Wen J, Miller D, Amine K, Chen Z (2015) PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy 18:253–264.  https://doi.org/10.1016/j.nanoen.2015.10.020 CrossRefGoogle Scholar
  20. 20.
    Quartarone E, Dall'Asta V, Resmini A, Tealdi C, Tredici IG, Tamburini UA, Mustarelli P (2016) Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries. J Power Sources 320:314–321.  https://doi.org/10.1016/j.jpowsour.2016.04.107 CrossRefGoogle Scholar
  21. 21.
    Li H, Wei Y, Zhang Y, Yin F, Zhang C, Wang G, Bakenov Z (2016) Synthesis and electrochemical investigation of highly dispersed ZnO nanoparticles as anode material for lithium-ion batteries. Ionics 22(8):1387–1393.  https://doi.org/10.1007/s11581-016-1661-x CrossRefGoogle Scholar
  22. 22.
    Xiao L, Mei D, Cao M, Qu D, Deng B (2015) Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries. J Alloys Compd 627:455–462.  https://doi.org/10.1016/j.jallcom.2014.11.195 CrossRefGoogle Scholar
  23. 23.
    Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125(15):4430–4431.  https://doi.org/10.1021/ja0299452 CrossRefGoogle Scholar
  24. 24.
    Shen GZ, Bando Y, Liu BD, Golberg D, Lee C-J (2006) Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process. Adv Funct Mater 16(3):410–416.  https://doi.org/10.1002/adfm.200500571 CrossRefGoogle Scholar
  25. 25.
    Yan T, Lu CYJ, Schuber R, Chang L, Schaadt DM, Chou MMC, Ploog KH, Chiang CM (2015) Growth of c-plane ZnO on γ-LiAlO2 (100) substrate with a GaN buffer layer by plasma assisted molecular beam epitaxy. Appl Surf Sci 351:824–830.  https://doi.org/10.1016/j.apsusc.2015.06.011 CrossRefGoogle Scholar
  26. 26.
    Ye Z, Wang T, Wu S, Ji X, Zhang Q (2017) Na-doped ZnO nanorods fabricated by chemical vapor deposition and their optoelectrical properties. J Alloys Compd 690:189–194.  https://doi.org/10.1016/j.jallcom.2016.08.100 CrossRefGoogle Scholar
  27. 27.
    Han J, Liu Z, Guo K, Zhang X, Hong T, Wang B (2015) AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting. Appl Catal B Environ 179:61–68.  https://doi.org/10.1016/j.apcatb.2015.05.008 CrossRefGoogle Scholar
  28. 28.
    Pung S-Y, Choy K-L, Hou X, Shan C (2008) Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanotechnology 19(43):435609.  https://doi.org/10.1088/0957-4484/19/43/435609 CrossRefGoogle Scholar
  29. 29.
    Kushima A, Liu XH, Zhu G, Wang ZL, Huang JY, Li J (2011) Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett 11(11):4535–4541.  https://doi.org/10.1021/nl201376j CrossRefGoogle Scholar
  30. 30.
    Xie Q, Zhang X, Wu X, Wu H, Liu X, Yue G, Yang Y, Peng D-L (2014) Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries. Electrochim Acta 125:659–665.  https://doi.org/10.1016/j.electacta.2014.02.003 CrossRefGoogle Scholar
  31. 31.
    Cauda V, Pugliese D, Garino N, Sacco A, Bianco S, Bella F, Lamberti A, Gerbaldi C (2014) Multi-functional energy conversion and storage electrodes using flower-like zinc oxide nanostructures. Energy 65:639–646.  https://doi.org/10.1016/j.energy.2013.12.025 CrossRefGoogle Scholar
  32. 32.
    Shen X, Mu D, Chen S, Wu B, Wu F (2013) Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5(8):3118–3125.  https://doi.org/10.1021/am400020n CrossRefGoogle Scholar
  33. 33.
    Shi R, Yang P, Wang J, Zhang A, Zhu Y, Cao Y, Ma Q (2012) Growth of flower-like ZnO via surfactant-free hydrothermal synthesis on ITO substrate at low temperature. CrystEngComm 14(18):5996–6003.  https://doi.org/10.1039/C2CE25606A CrossRefGoogle Scholar
  34. 34.
    Feng J-J, Liao Q-C, Wang A-J, Chen J-R (2011) Mannite supported hydrothermal synthesis of hollow flower-like ZnO structures for photocatalytic applications. CrystEngComm 13(12):4202–4210.  https://doi.org/10.1039/C1CE05090G CrossRefGoogle Scholar
  35. 35.
    Raula M, Rashid MH, Paira TK, Dinda E, Mandal TK (2010) Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties. Langmuir 26(11):8769–8782.  https://doi.org/10.1021/la904507q CrossRefGoogle Scholar
  36. 36.
    Gao X, Li X, Yu W (2005) Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc−ethylenediamine complex. J Phys Chem B 109(3):1155–1161.  https://doi.org/10.1021/jp046267s CrossRefGoogle Scholar
  37. 37.
    Bayan S, Gogurla N, Midya A, Ray SK (2016) White light emission characteristics of two dimensional graphitic carbon nitride and ZnO nanorod hybrid heterojunctions. Carbon 108:335–342.  https://doi.org/10.1016/j.carbon.2016.07.032 CrossRefGoogle Scholar
  38. 38.
    Zhang G, Hou S, Zhang H, Zeng W, Yan F, Li CC, Duan H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv Mater 27(14):2400–2405.  https://doi.org/10.1002/adma.201405222 CrossRefGoogle Scholar
  39. 39.
    Liu X, Sun Y, Yu M, Yin Y, Du B, Tang W, Jiang T, Yang B, Cao W, Ashfold MNR (2018) Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sensors Actuators B Chem 255:3384–3390.  https://doi.org/10.1016/j.snb.2017.09.165 CrossRefGoogle Scholar
  40. 40.
    Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518.  https://doi.org/10.1038/nmat360140 CrossRefGoogle Scholar
  41. 41.
    Song X, Li J, Li Z, Xiao Q, Lei G, Hu Z, Ding Y, Kheimeh Sari HM, Li X (2019) Superior sodium storage of carbon-coated NaV6O15 nanotube cathode: pseudocapacitance versus intercalation. ACS Appl Mater Interfaces 11:10631–10641.  https://doi.org/10.1021/acsami.8b20494 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Rheological MechanicsXiangtan UniversityXiangtanChina

Personalised recommendations