Advertisement

Ionics

pp 1–10 | Cite as

Na3+x[CrxTi2-x(PO4)3] glass-ceramic electrolyte: ionic conductivity and structural correlations for different heat treating temperatures and time schedules

  • Shyam Sundar Gandi
  • Suman Gandi
  • Venkata Rao Madduluri
  • Naresh Kumar Katari
  • Dimple P. Dutta
  • Balaji Rao RavuriEmail author
Original Paper
  • 2 Downloads

Abstract

In this article, highly Na+ ion conducting glass samples based on Na3+x[CrxTi2-x(PO4)3] (x = 0, 0.25, 0.5, and 0.75 mol%) (NCTPx) system was prepared via melt quenching technique. The as-formed precursor glasses were transformed into glass-ceramics by heat treating at and above Tc for different time schedules. Powder XRD indicates the formation of NASICON type phase (Na3Ti2(PO4)3) which is known for its higher stability and ionic conductivity. This phase is precipitated due to the partial replacement of tetrahedral Ti4+ ions by trivalent Cr3+ ions in the NCTP glass-ceramic network. The NCTP0.5 glass-ceramic sample heat treated at 1066 K for 9 h exhibited best bulk conductivity (σ = 8.52 × 10−4 S/cm) and minimum activation energy (0.448 eV). For Tc > 1066 K, impure phases such as Cr2O3 and NaCrP2O7 were precipitated along the grain boundaries which resist the migration of Na+ ions between the grains. The best conducting NCTP0.5 sample after crystallization (glass-ceramic) exhibited good chemical stability in ambient atmosphere for 60 days.

Keywords

Glass and glass-ceramic electrolytes Electrochemical impedance studies Crystallization Na-ion batteries 

Notes

Acknowledgements

The authors thank Dr. K.S Rama Rao, Sr. Principal Scientist, CSIR-Indian Institute of Chemical Technology, Hyderabad, India, for kindly extending the facility to acquire SEM micrographs.

Funding information

Financial support for this work, provided by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), and Govt. of India, Grant No: 34/14/06/2018-BRNS/34082, is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448CrossRefGoogle Scholar
  2. 2.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRefGoogle Scholar
  3. 3.
    Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacin M (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3(1):22–42CrossRefGoogle Scholar
  4. 4.
    Oshima T, Kajita M, Okuno A (2004) Development of sodium-sulfur batteries. Int J Appl Ceram Technol 1(3):269–276CrossRefGoogle Scholar
  5. 5.
    Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7(42):23685–23693CrossRefGoogle Scholar
  6. 6.
    Zhu Y, He X, Mo Y (2016) First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4(9):3253–3266CrossRefGoogle Scholar
  7. 7.
    Wu X, Cao Y, Ai X, Qian J, Yang H (2013) A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem Commun 31:145–148CrossRefGoogle Scholar
  8. 8.
    Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P (2015) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162CrossRefGoogle Scholar
  9. 9.
    Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412(6846):520–523CrossRefGoogle Scholar
  10. 10.
    Li Q, Chen J, Fan L, Kong X, Lu Y (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 1(1):18–42CrossRefGoogle Scholar
  11. 11.
    Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569CrossRefGoogle Scholar
  12. 12.
    Zheng Z, Fang H, Yang F, Liu Z-K, Wang Y (2014) Amorphous LiLaTiO3 as solid electrolyte material. J Electrochem Soc 161(4):A473–A479CrossRefGoogle Scholar
  13. 13.
    Minami K, Hayashi A, Tatsumisago M (2011) Crystallization process for superionic Li7P3S11 glass–ceramic electrolytes. J Am Ceram Soc 94(6):1779–1783CrossRefGoogle Scholar
  14. 14.
    Cruz AM, Ferreira EB, Rodrigues ACM (2009) Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass–ceramic. J Non-Cryst Solids 355(45–47):2295–2301CrossRefGoogle Scholar
  15. 15.
    Ni Y, Zheng R, Tan X, Yue W, Lv P, Yang J, Song D, Yu K, Wei W (2015) A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries. J Mater Chem A 3(34):17558–17562CrossRefGoogle Scholar
  16. 16.
    Gandi S, Chinta SR, Ojha PK, Surendra Babu MS, Ravuri BR (2018) High Na-ion conducting Na1+x[SnxGe2−x(PO4)3] glass-ceramic electrolytes: structural and electrochemical impedance studies. J Am Ceram Soc 101(1):167–177CrossRefGoogle Scholar
  17. 17.
    Suman G, Rao CS, Ojha PK, Babu MS, Rao RB (2017) Mixed polyanion NaCo1−x (VO)xPO4 glass–ceramic cathode: role of ‘Co’on structural behaviour and electrochemical performance. J Mater Sci 52(9):5038–5047CrossRefGoogle Scholar
  18. 18.
    Thokchom JS, Gupta N, Kumar B (2008) Superionic conductivity in a lithium aluminum germanium phosphate glass–ceramic. J Electrochem Soc 155(12):A915–A920CrossRefGoogle Scholar
  19. 19.
    Reddy CKK, Suman G, Rao RB, Katari NK, Reddy M (2016) Lithium–germanium–phosphate glassceramic electrolytes: correlation between the nanocrystallization and electrical studies. Appl Nanosci 6(7):1043–1052CrossRefGoogle Scholar
  20. 20.
    Kabbour H, Coillot D, Colmont M, Masquelier C, Mentré O (2011) α-Na3M2(PO4)3 (M= Ti, Fe): absolute cationic ordering in NASICON-type phases. J Am Chem Soc 133(31):11900–11903CrossRefGoogle Scholar
  21. 21.
    Newnham Ε, DE Haan Υ (1962) Refinement of the a Al2O3, Ti2O3, V2O3 and Cr2O3 and Cr2O3 structures. Zeitschrift für Kristallographie-Crystalline Materials 117(1–6):235–237CrossRefGoogle Scholar
  22. 22.
    Gruss M, Glaum R (1996) Refinement of the superstructure of C-type chromium (III) tris (metaphosphate), Cr(PO3)3. Acta Crystallogr C 52(11):2647–2650CrossRefGoogle Scholar
  23. 23.
    Reddy CKK, Rao RB, Reddy CG (2015) The role of crystallization on microstructural and electrical studies of lithium germanium phosphate glass-ceramic electrolytes. Ionics 21(4):967–979CrossRefGoogle Scholar
  24. 24.
    Sundar G, Suman G, Kumar K, Dutta D, Rao R (2018) Investigation on the applicability of high Na-ion conducting Na3+x[ZrxSc2-x(PO4)3] glass-ceramic electrolyte for use in safer Na-ion batteries. J Phys Chem Solids 209:209–218Google Scholar
  25. 25.
    Bohaty L, Liebertz J, Fröhlich R (1982) Die Kristallstruktur von NaCrP2O7. Zeitschrift für Kristallographie-Crystalline Materials 161(1–4):53–60CrossRefGoogle Scholar
  26. 26.
    Illbeigi M, Fazlali A, Kazazi M, Mohammadi AH (2016) Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass–ceramics. Solid State Ionics 289:180–187CrossRefGoogle Scholar
  27. 27.
    Goharian P, Yekta BE, Aghaei A, Banijamali S (2015) Lithium ion-conducting glass-ceramics in the system Li2O–TiO2–P2O5–Cr2O3–SiO2. J Non-Cryst Solids 409:120–125CrossRefGoogle Scholar
  28. 28.
    Illbeigi M, Fazlali A, Kazazi M, Mohammadi AH (2018) Ionic conduction and crystal structure of aluminum doped NASICON-type LiGe2(PO4)3 glass-ceramic crystallized at different times and temperatures. J Electroceram 40(3):180–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shyam Sundar Gandi
    • 1
  • Suman Gandi
    • 1
  • Venkata Rao Madduluri
    • 2
  • Naresh Kumar Katari
    • 3
  • Dimple P. Dutta
    • 4
  • Balaji Rao Ravuri
    • 1
    Email author
  1. 1.Department of Physics, School of TechnologyGITAM Deemed to be UniversityHyderabadIndia
  2. 2.Catalysis and Fine Chemicals DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  3. 3.Department of Chemistry, School of TechnologyGITAM Deemed to be UniversityHyderabadIndia
  4. 4.Chemistry Division, Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations