Advertisement

Ionics

pp 1–8 | Cite as

Nitrogen-doped 3D web-like interconnected porous carbon prepared by a simple method for supercapacitors

  • Li Na Kong
  • Wang Yang
  • Li Su
  • Shuai Guo Hao
  • Guang Jie ShaoEmail author
  • Xiu Juan QinEmail author
Original Paper
  • 42 Downloads

Abstract

Carbon-based materials have always been a hot issue of research as important electrode materials for supercapacitors. Their capacitance characteristics depend on specific surface area, pore size distribution, and chemical composition etc. In this report, we utilize sodium citrate as a carbon source and melamine and urea as nitrogen sources. We prepared two types of nitrogen-doped hierarchical porous carbons using a simple and environmentally friendly method for supercapacitors in an aqueous solution containing 6 mol/L KOH. The results show, when melamine was used as a nitrogen source, benefit from a larger BET surface area of 819.5463 m2/g, and higher nitrogen content 4.14% show a higher specific capacitance characteristics 383F g−1 at 0.3A g−1 and high capacity retention of 99.6% after 10,000 cycles compared with the product of urea as a nitrogen source.

Keywords

Nitrogen doped Porous carbon Supercapacitor 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51674221 and 51704261) and the Natural Science Foundation of Hebei Province (B2018203330 and B2018203360).

Supplementary material

11581_2019_2975_MOESM1_ESM.pdf (203 kb)
ESM 1 (PDF 203 kb)

References

  1. 1.
    Simon P, Gogotsi Y, Dunn B (2014) Materials science. Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211CrossRefGoogle Scholar
  2. 2.
    Miller JR, Simon P (2008) Materials science. Electrochemical capacitors for energy management. Science 321(5889):651–652CrossRefGoogle Scholar
  3. 3.
    Su L, Gao L, Du Q, Hou L, Ma Z, Qin X, Shao G (2017) Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. J Alloys Compd 312:296–305Google Scholar
  4. 4.
    Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem Eng J 306:193–203CrossRefGoogle Scholar
  5. 5.
    Zhang SW, Yin BS, Liu C, Wang ZB, Gu DM (2017) Self-assembling hierarchical NiCo 2 O 4 /MnO 2 nanosheets and MoO 3 /PPy core-shell heterostructured nanobelts for supercapacitor. Chem Eng J 312:296–315CrossRefGoogle Scholar
  6. 6.
    Liu F, Xiang C, Zhang H, Zhang B, Hai S, Long J, Wang Z, Huang H, Yang W (2018) Synthesis of self-assembly 3D porous Ni(OH)2 with high capacitance for hybrid supercapacitors. Electrochim Acta 269:102–110CrossRefGoogle Scholar
  7. 7.
    Beguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–51, 2283CrossRefGoogle Scholar
  8. 8.
    Xu B, Hou S, Cao G, Feng W, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem 22(36):19088–19093CrossRefGoogle Scholar
  9. 9.
    Li LZ, Yi G, Zhao XS (2013) Advanced porous carbon electrodes for electrochemical capacitors. J Mater Chem A 1(33):9395–9408CrossRefGoogle Scholar
  10. 10.
    Yang W, Yang W, Zhang F, Wang G, Shao G (2018) Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: an advanced carbon nanostructure for superior lithium and sodium storage. Small 14(39):1802221CrossRefGoogle Scholar
  11. 11.
    Wang J, Heerwig A, Lohe MR, Oschatz M, Borchardt L, Kaskel S (2012) Fungi-based porous carbons for CO2 adsorption and separation. J Mater Chem 22(28):13911–13913CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Ran W, He J, Song Y, Zhang C, Xiong DB, Gao F, Wu J, Xia Y (2014) Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl Mater Interfaces 7(2):1132–1139CrossRefGoogle Scholar
  13. 13.
    Hai S, Haichao H, Haitao Z, Xiang C, Binbin Z, Bingni G, Xiaotong Z, Songhao W, Weidong H, Cheng Y (2018) In situ direct method to massively prepare hydrophilic porous carbide-derived carbons for high-performance supercapacitors. ACS Appl Energy Mater 1:3544–3553CrossRefGoogle Scholar
  14. 14.
    Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, Wong CP, Liu H, Yang B (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23CrossRefGoogle Scholar
  15. 15.
    Chen H, Li Q, Na T, Long D, Cheng M, Wei Y, Wang J, Ling L (2016) Simultaneous micropore development and nitrogen doping of ordered mesoporous carbons for enhanced supercapacitor and Li-S cathode performance. Electrochim Acta 214:231–240CrossRefGoogle Scholar
  16. 16.
    Hai S, Zhang H, Liu F, Chun F, Zhang B, Xiang C, Huang H, Deng W, Gu B, Zhang H (2017) High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem Eng J 322:73–81CrossRefGoogle Scholar
  17. 17.
    Zhang H, Lei Z, Chen J, Hai S, Liu F, Yang W (2016) One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. J Power Sources 315:120–126CrossRefGoogle Scholar
  18. 18.
    Zhang SW, Yin BS, Liu C, Wang ZB, Gu DM (2018) A lightweight, compressible and portable sponge-based supercapacitor for future power supply. Chem Eng J 349:509–521CrossRefGoogle Scholar
  19. 19.
    Zhang LM, Wang ZB, Zhang JJ, Sui XL, Zhao L, Gu DM (2015) Honeycomb-like mesoporous nitrogen-doped carbon supported Pt catalyst for methanol electrooxidation. Carbon 93:1050–1058CrossRefGoogle Scholar
  20. 20.
    Li B, Shi R, Han C, Li H, Kang F (2018) NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J Mater Chem A 6(35):17057–17066CrossRefGoogle Scholar
  21. 21.
    Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X, Wu X, Ji H, Ruoff RS, Zhu Y (2017) Incorporating pyrrolic and Pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater 29(8)Google Scholar
  22. 22.
    Enterría M, Suárez-García F, Martínez-Alonso A, Tascón J (2012) Synthesis of ordered micro–mesoporous carbons by activation of SBA-15 carbon replicas. Microporous Mesoporous Mater 151(11):390–396CrossRefGoogle Scholar
  23. 23.
    Li Y, Wang G, Tong W, Fan Z, Peng Y (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175CrossRefGoogle Scholar
  24. 24.
    Pu J, Li C, Lei T, Li T, Lin L, Kai Z, Xu Y, Li Q, Yao Y (2015) Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon 94:650–660CrossRefGoogle Scholar
  25. 25.
    Sun Y, Sui ZY, Li X, Xiao PW, Wei Z, Han BH (2018) Nitrogen-doped porous carbons derived from polypyrrole-based aerogels for gas uptake and supercapacitors. ACS Appl Nano Mater 1(2):609–616CrossRefGoogle Scholar
  26. 26.
    Chen LF, Lu Y, Le YU, Lou XWD (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 10(8):1777–1783CrossRefGoogle Scholar
  27. 27.
    Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050CrossRefGoogle Scholar
  28. 28.
    Ke C, Sun Z, Fang R, Ying S, Cheng HM, Feng L (2018) Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for Lithium-sulfur batteries. Adv Funct Mater:1707592Google Scholar
  29. 29.
    Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5(5):5261CrossRefGoogle Scholar
  30. 30.
    Chen J, Mao Z, Zhang L, Tang Y, Wang D, Bie L, Fahlman BD (2018) Direct production of nitrogen-doped porous carbon from urea via magnesiothermic reduction. Carbon 130:S0008622317313581Google Scholar
  31. 31.
    Chen S, Wang J, Ling F, Ma R, Lu B (2018) An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv Energy Mater 8(18):1800140CrossRefGoogle Scholar
  32. 32.
    Xie Y, Chen Y, Liu L, Tao P, Fan M, Xu N, Shen X, Yan C (2017) Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv Mater 29(35):1702268CrossRefGoogle Scholar
  33. 33.
    Shao C, Qiu S, Chu H, Zou Y, Xiang C, Xu F, Sun L (2018) Nitrogen-doped porous microsphere carbons derived from glucose and aminourea for high-performance supercapacitors. Catal Today 318:150–156CrossRefGoogle Scholar
  34. 34.
    G.V. Bianco, M. Losurdo, ., M.M. Giangregorio, P. Capezzuto, ., G. Bruno (2014)Exploring and rationalising effective n-doping of large area CVD-graphene by NH3, Phys Chem Chem Phys 16(8) 3632–3639CrossRefGoogle Scholar
  35. 35.
    Javid A, Kumar M, Han JG (2017) Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering. Appl Surf Sci 392:1062–1067CrossRefGoogle Scholar
  36. 36.
    Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140CrossRefGoogle Scholar
  37. 37.
    Yang M, Zhou Z (2017) Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv Sci 4(8):1600408CrossRefGoogle Scholar
  38. 38.
    Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102CrossRefGoogle Scholar
  39. 39.
    Yang W, Yang W, Ding F, Sang L, Ma Z, Shao G (2017) Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111:419–427CrossRefGoogle Scholar
  40. 40.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguezreinoso F, Rouquerol J, Sing KSW (2016) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 38(1):25–25Google Scholar
  41. 41.
    Guo HL (2009) Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources 186(2):551–556CrossRefGoogle Scholar
  42. 42.
    Jiang XU, Chao WU, Yan P, Zhang R, Yue X, Shanhai GE (2014) Pore characteristics of carbide-derived carbons obtained from carbides with different carbon volume fractions. Microporous Mesoporous Mater 198(11):74–81Google Scholar
  43. 43.
    Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565CrossRefGoogle Scholar
  44. 44.
    Wu J, Hua X, Jin Z (2014) Raman spectroscopy of graphene. Acta Chim Sin 72(3):0–0Google Scholar
  45. 45.
    Jiao W, Zheng X, Chao J, Tian J, Yang R (2015) Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 92:327–338CrossRefGoogle Scholar
  46. 46.
    Byon HR, Gallant BM, Lee SW, Yang SH (2013) Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance Lithium batteries. Adv Funct Mater 23(8):1037–1045CrossRefGoogle Scholar
  47. 47.
    Mao Y, Hui D, Xu B, Lin Z, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5(7):7950–7955CrossRefGoogle Scholar
  48. 48.
    Wang Y, Zhou L, Li CS, Yu ZM, Li JS, Jin LH, Shen Y, Wang PF, Lu YF (2012) Chemical solution approach to SrTiO synthesis using a new precursor. J Mater Sci 47(1):433–439CrossRefGoogle Scholar
  49. 49.
    Primo A, Atienzar P, Sanchez E, Delgado JM, García H (2012) From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun 48(74):9254–9256CrossRefGoogle Scholar
  50. 50.
    Olejniczak A, Lezanska M, Wloch J, Kucinska A, Lukaszewicz JP (2013) Novel nitrogen-containing mesoporous carbons prepared from chitosan. J Mater Chem A 1(31):8961–8967CrossRefGoogle Scholar
  51. 51.
    Arenillas A, Drage TC, Smith K, Snape CE (2005) CO 2 removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds. J Anal Appl Pyrolysis 74(1):298–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hebei Key Laboratory of applied chemistry, College of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.State key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations