Advertisement

Ionics

pp 1–10 | Cite as

An environmental friendly cross-linked polysaccharide binder for silicon anode in lithium-ion batteries

  • Run You
  • Xiang Han
  • Ziqi Zhang
  • Lianchuan Li
  • Cheng Li
  • Wei Huang
  • Jianyuan Wang
  • Jianfang Xu
  • Songyan ChenEmail author
Original Paper
  • 37 Downloads

Abstract

Silicon is a promising anode material for the next generation of lithium-ion batteries. Binder plays an essential role in maintaining electrode integrity when Si undergoes dramatic volume change during lithiation/delithiation processes. Herein, an environmental friendly water-soluble binder of oxidized starch cross-linked sodium carboxymethyl cellulose (OS-CMC) possessing three-dimensional (3D) network structure is designed. The abundant hydroxyl and carboxyl groups and the 3D structure of the cross-linked binder not only enhance the bonding with Si nanoparticles surface but also greatly alleviate the mechanical stress, thus maintaining the integrity of electrode and conductive network. In addition, it can facilitate faster lithium-ion transportation at the interface of Si/OS-CMC. As a result, the Si anodes with OS-CMC binder show good electrochemical stability and better mechanical properties than that of Si anodes with OS or CMC binder. The Si anodes with OS-CMC binder exhibit a discharge capacity of 1922 mAh g−1 after 100 cycles at a current density of 0.4 A g−1 with a high initial discharge capacity of 3424 mAh g−1 and maintain a superior capacity of 1667 mAh g−1 at a high current density of 8 A g−1. Our work provides a novel binder design for high-performance Si-based anodes.

Keywords

Lithium-ion batteries Si anode Cross-linked binder Oxidized starch Sodium carboxymethyl cellulose 

Notes

Funding information

This study was financially supported by the National Natural Science Foundation of China (grants 61534005, 21233004, and 61474081), weapons and equipment pre-research field fund project (6140721040411), and the scientific research project of Fujian provincial Department of Education (grant JA15651).

Supplementary material

11581_2019_2972_MOESM1_ESM.docx (2.3 mb)
ESM 1 (DOCX 2346 kb)

References

  1. 1.
    Liu D, Zhao Y, Tan R, Tian LL, Liu Y, Chen H, Pan F (2017) Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 36:206–212CrossRefGoogle Scholar
  2. 2.
    Chen T, Zhang Q, Pan J, Xu J, Liu Y, Al-Shroofy M, Cheng YT (2016) Low-temperature treated lignin as both binder and conductive additive for silicon nanoparticle composite electrodes in Lithium-ion batteries. ACS Appl Mater Interfaces 8:32341–32348CrossRefGoogle Scholar
  3. 3.
    Assresahegn BD, Bélanger D (2017) Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives. J Power Sources 345:190–201CrossRefGoogle Scholar
  4. 4.
    Higgins TM, Park SH, King PJ, Zhang CJ, McEvoy N, Berner NC, Daly D, Shmeliov A, Khan U, Duesberg G, Nicolosi V, Coleman JN (2016) A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10:3702–3713CrossRefGoogle Scholar
  5. 5.
    Wang X, Li G, Seo MH, Lui G, Hassan FM, Feng K, Xiao X, Chen Z (2017) Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl Mater Interfaces 9:9551–9558CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Jiang Y, Peng Z, Yang S, Lin H, Liu M, Wang D (2017) Facile pyrolyzed N-doped binder network for stable Si anodes. ACS Appl Mater Interfaces 9:32775–32781CrossRefGoogle Scholar
  7. 7.
    Xu Y, Swaans E, Chen S, Basak S, Harks PPRML, Peng B, Zandbergen HW, Borsa DM, Mulder FM (2017) A high-performance Li-ion anode from direct deposition of Si nanoparticles. Nano Energy 38:477–485CrossRefGoogle Scholar
  8. 8.
    Peng C, Chen H, Li Q, Cai W, Yao Q, Wu Q, Yang J, Yang Y (2014) Synergistically reinforced lithium storage performance of in situ chemically grown silicon@silicon oxide core–shell nanowires on three-dimensional conductive graphitic scaffolds. J Mate Chem A 2:13859–13867CrossRefGoogle Scholar
  9. 9.
    Vogl US, Lux SF, Crumlin EJ, Liu Z, Terborg L, Winter M, Kostecki R (2015) The mechanism of SEI formation on a single crystal Si(100) electrode. J Electrochem Soc 162:A603–A607CrossRefGoogle Scholar
  10. 10.
    Bie Y, Yang J, Nuli Y, Wang J (2017) Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. J Mater Chem A 5:1919–1924CrossRefGoogle Scholar
  11. 11.
    Chen H, Xiao Y, Wang L, Yang Y (2011) Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J Power Sources 196:6657–6662CrossRefGoogle Scholar
  12. 12.
    Zheng T, Jia Z, Lin N, Langer T, Lux S, Lund I, Gentschev AC, Qiao J, Liu G (2017) Molecular spring enabled high-performance anode for lithium ion batteries. Polymers 9:657CrossRefGoogle Scholar
  13. 13.
    Zhao X, Yim CH, Du N, Abu-Lebdeh Y (2018) Shortly branched, linear Dextrans as efficient binders for silicon/graphite composite electrodes in Li-ion batteries. Ind Eng Chem Res 57:9062–9074CrossRefGoogle Scholar
  14. 14.
    Chen Y, Hu Y, Shen Z, Chen R, He X, Zhang X, Li Y, Wu K (2017) Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J Power Sources 342:467–475CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Chen H, Luo L, Zhao B, Luo H, Han X, Wang J, Wang C, Yang Y, Zhu T, Liu M (2018) Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci 11:669–681CrossRefGoogle Scholar
  16. 16.
    Piper DM, Yersak TA, Son SB, Kim SC, Kang CS, Oh KH, Ban C, Dillon AC, Lee SH (2013) Conformal coatings of cyclized-PAN for mechanically resilient Si nano-composite anodes. Adv Energy Mate 3:697–702CrossRefGoogle Scholar
  17. 17.
    Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2:3004–3010CrossRefGoogle Scholar
  18. 18.
    Park HK, Kong BS, Oh ES (2011) Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem Commun 13:1051–1053CrossRefGoogle Scholar
  19. 19.
    Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Battaglia VS, Wang L, Yang W (2011) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23:4679–4683CrossRefGoogle Scholar
  20. 20.
    Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79CrossRefGoogle Scholar
  21. 21.
    Jeong YK, Kwon TW, Lee I, Kim TS, Coskun A, Choi JW (2015) Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ Sci 8:1224–1230CrossRefGoogle Scholar
  22. 22.
    Liu J, Zhang Q, Zhang T, Li JT, Huang L, Sun SG (2015) A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv Funct Mater 25:3599–3605CrossRefGoogle Scholar
  23. 23.
    Lu H, Cornell A, Alvarado F, Behm F, Leijonmarck S, Li J, Tomani P, Lindbergh G (2016) Lignin as a binder material for eco-friendly Li-ion batteries. Materials (Basel) 9Google Scholar
  24. 24.
    Wu ZY, Deng L, Li JT, Huang QS, Lu YQ, Liu J, Zhang T, Huang L, Sun SG (2017) Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochim Acta 245:371–378CrossRefGoogle Scholar
  25. 25.
    Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed Engl 51:8762–8767CrossRefGoogle Scholar
  26. 26.
    Xu Z, Yang J, Zhang T, Nuli Y, Wang J, Hirano SI (2018) Silicon microparticle anodes with self-healing multiple network binder. Joule 2:950–961CrossRefGoogle Scholar
  27. 27.
    Choi S, Kwon TW, Coskun A, Choi JW (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357:279–283CrossRefGoogle Scholar
  28. 28.
    Bie Y, Yang J, Nuli Y, Wang J (2016) Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries. RSC Adv 6:97084–97088CrossRefGoogle Scholar
  29. 29.
    Rohan R, Kuo TC, Chiou CY, Chang YL, Li CC, Lee JT (2018) Low-cost and sustainable corn starch as a high-performance aqueous binder in silicon anodes via in situ cross-linking. J Power Sources 396:459–466CrossRefGoogle Scholar
  30. 30.
    Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem 18:3796–3803CrossRefGoogle Scholar
  31. 31.
    Duan X, Han Y, Li Y, Chen Y (2014) Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food. RSC Adv 4:60995–61000CrossRefGoogle Scholar
  32. 32.
    Zhang YR, Wang XL, Zhao GM, Wang YZ (2012) Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym 87:2554–2562CrossRefGoogle Scholar
  33. 33.
    Yoon DE, Hwang C, Kang NR, Lee U, Ahn D, Kim JY, Song HK (2016) Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders. ACS Appl Mater Interfaces 8:4042–4047CrossRefGoogle Scholar
  34. 34.
    Ballesteros LF, Cerqueira MA, Teixeira JA, Mussatto SI (2018) Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. Int J Biol Macromol 106:647–655CrossRefGoogle Scholar
  35. 35.
    Gendensuren B, Oh ES (2018) Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery. J Power Sources 384:379–386CrossRefGoogle Scholar
  36. 36.
    Haregewoin AM, Terborg L, Zhang L, Jurng S, Lucht BL, Guo J, Ross PN, Kostecki R (2018) The electrochemical behavior of poly 1-pyrenemethyl methacrylate binder and its effect on the interfacial chemistry of a silicon electrode. J Power Sources 376:152–160CrossRefGoogle Scholar
  37. 37.
    He J, Zhang L (2018) Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. J Alloys Compd 763:228–240CrossRefGoogle Scholar
  38. 38.
    Gu YY, Yang SM, Zhu GB, Yuan YN, Qu QT, Wang Y, Zheng HH (2018) The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim Acta 269:405–414CrossRefGoogle Scholar
  39. 39.
    Kim JM, Guccini V, Seong KD, Oh J, Salazar-Alvarez G, Piao Y (2015) Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes. Carbon 118:8–17CrossRefGoogle Scholar
  40. 40.
    Nguyen MHT, Oh ES (2015) Improvement of the characteristics of poly(acrylonitrile–butylacrylate) water-dispersed binder for lithium-ion batteries by the addition of acrylic acid and polystyrene seed. J Electroanal Chem 739:111–114CrossRefGoogle Scholar
  41. 41.
    Wu H, Yu GH, Pan LJ, Liu NA, McDowell MT, Bao ZA, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:6Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Run You
    • 1
  • Xiang Han
    • 1
    • 2
  • Ziqi Zhang
    • 1
  • Lianchuan Li
    • 1
  • Cheng Li
    • 1
  • Wei Huang
    • 1
  • Jianyuan Wang
    • 1
  • Jianfang Xu
    • 1
  • Songyan Chen
    • 1
    Email author
  1. 1.Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Collaborative Innovation Center for Optoelectronic Semiconductors and efficient Devices, Department of Physics, Jiujiang Research InstituteXiamen UniversityXiamenChina
  2. 2.Materials Science and Engineering DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations