Advertisement

Ionics

, Volume 25, Issue 9, pp 4325–4331 | Cite as

Synthesis of three-dimensional graphene aerogel-supported NiCo2O4 nanowires for supercapacitor application

  • Hongfang JiuEmail author
  • Liya Jiang
  • Yuying Gao
  • Qing Zhang
  • Lixin Zhang
Original Paper
  • 178 Downloads

Abstract

In the present work, the NiCo2O4 (NCO) nanowires were grown on three-dimensional (3D) porous graphene aerogel (GA) through a facile two-step hydrothermal method, labeled as NCO/GA. NCO/GA obtained exhibited a high specific capacitance of 720 F g−1 at the current density of 1 A g−1 and good cycling performance with 84% capacitance retention after 1000 cycles. Additionally, an asymmetric supercapacitor device was fabricated by using NCO/GA as the positive electrode and activated carbon (AC) as the negative electrode. The as-prepared NCO/GA//AC device delivered a high energy density of 25.41 Wh kg−1 at a power density of 658 W kg−1 and good cycling stability (78% of the initial capacitance retention after 3000 cycles).

Keywords

NiCo2O4 Nanowires Graphene aerogel Supercapacitor 

Notes

Funding information

This work was supported by the ShanXi Provincial Natural Science Foundation of China (grant numbers 2015011016).

References

  1. 1.
    Arul NS, Han JI, Mangalaraj D (2018) Fabrication of highly flexible conducting electrode based on MnS nanoparticles/graphite/scotch tape for supercapacitor applications. J Mater Sci-Mater EL 29:1636–1642.  https://doi.org/10.1007/s10854-017-8075-z CrossRefGoogle Scholar
  2. 2.
    Xu Y, Shi G, Duan X (2015) Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc Chem Res 48:1666–1675.  https://doi.org/10.1021/acs.accounts.5b00117 CrossRefGoogle Scholar
  3. 3.
    Wang R, Sui Y, Huang S, Pu Y, Cao P (2018) High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem Eng J 331:527–535.  https://doi.org/10.1016/j.cej.2017.09.004 CrossRefGoogle Scholar
  4. 4.
    Liu X, Wei F, Sui Y, Qi J, He Y, Meng Q (2018) Polyhedral ternary oxide FeCo2O4: a new electrode material for supercapacitors. J Alloys Compd 735:1339–1343.  https://doi.org/10.1016/j.jallcom.2017.11.251 CrossRefGoogle Scholar
  5. 5.
    Qi J, Chang Y, Sui Y, He Y, Meng Q, Wei F, Ren Y, Jin Y (2018) Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv Mater Interfaces 5:1700985.  https://doi.org/10.1002/admi.201700985 CrossRefGoogle Scholar
  6. 6.
    Lv J, Wang Z, Miura H (2018) Facile synthesis of mesoporous NiO nanoflakes on graphene foam and its electrochemical properties for supercapacitor application. Solid State Commun 269:45–49.  https://doi.org/10.1016/j.ssc.2017.10.005 CrossRefGoogle Scholar
  7. 7.
    Li Z, Su Y, Yun G, Shi K, Lv X, Yang B (2014) Binder free synthesis of MnO2 nanoplates/graphene composites with enhanced supercapacitive properties. Solid State Commun 192:82–88.  https://doi.org/10.1016/j.ssc.2014.04.012 CrossRefGoogle Scholar
  8. 8.
    Lonkar SP, Deshmukh YS, Abdala AA (2015) Recent advances in chemical modifications of grapheme. Nano Res 8:1039–1074.  https://doi.org/10.1007/s12274-014-0622-9 CrossRefGoogle Scholar
  9. 9.
    Zhang N, Fu C, Liu D, Li Y, Zhou H, Kuang Y (2016) Three-dimensional pompon-like MnO2/graphene hydrogel composite for supercapacitor. Electrochim Acta 210:804–811.  https://doi.org/10.1016/j.electacta.2016.06.004 CrossRefGoogle Scholar
  10. 10.
    Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223.  https://doi.org/10.1002/adma.201204530 CrossRefGoogle Scholar
  11. 11.
    Luan V, Jin SC, Kim EJ, Hur SH (2014) The molecular level control of three-dimensional graphene oxide hydrogel structure by using various diamines. Chem Eng J 246:64–70.  https://doi.org/10.1016/j.cej.2014.01.105 CrossRefGoogle Scholar
  12. 12.
    Luan VH, Chung JS, Hur SH (2015) Preparation of a reduced graphene oxide hydrogel by Ni ions and its use in a supercapacitor electrode. RSC Adv 5:22753–22758.  https://doi.org/10.1039/C4RA16598E CrossRefGoogle Scholar
  13. 13.
    Xu WB, Mu B, Wang AQ (2018) All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. J Mater Sci 53:11659–11670.  https://doi.org/10.1007/s10853-018-2418-x CrossRefGoogle Scholar
  14. 14.
    Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452.  https://doi.org/10.1038/srep04452 CrossRefGoogle Scholar
  15. 15.
    Azman NHN, Mamat MS, Hong NL, Sulaiman Y (2018) High-performance symmetrical supercapacitor based on poly (3,4)-ethylenedioxythiophene/graphene oxide/iron oxide ternary composite. J Mater Sci-Mater EL 29:6916–6923.  https://doi.org/10.1007/s10854-018-8678-z CrossRefGoogle Scholar
  16. 16.
    Zhang L, Zheng W, Jiu H, Ni C, Chang J, Qi G (2016) The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor. Electrochim Acta 215:212–222.  https://doi.org/10.1016/j.electacta.2016.08.099 CrossRefGoogle Scholar
  17. 17.
    Wang L, Jiao X, Liu P, Ouyang Y, Xia X, Lei W, Hao Q (2018) Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors. Appl. Surf Sci 427:174–181.  https://doi.org/10.1016/j.apsusc.2017.07.221 CrossRefGoogle Scholar
  18. 18.
    Zhang X, Zhou Y, Luo B, Zhu H, Chu W, Huang K (2018) Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nano Lett 10:13.  https://doi.org/10.1007/s40820-017-0164-2 CrossRefGoogle Scholar
  19. 19.
    Gao H, Cao Y, Chen Y, Lai X, Ding S, Tu J, Qi J (2018) Au nanoparticle-decorated NiCo2O4 nanoflower with enhanced electrocatalytic activity toward methanol oxidation. J Alloys Compd 732:460–469.  https://doi.org/10.1016/j.jallcom.2017.10.250 CrossRefGoogle Scholar
  20. 20.
    Jiang H, Ma J, Li C (2012) Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem Commun 48:4465–4467.  https://doi.org/10.1039/c2cc31418e CrossRefGoogle Scholar
  21. 21.
    Wang Y, Liu P, Zhu K, Wang J, Liu J (2017) Hierarchical bilayered hybrid nanostructural arrays of NiCo2O4 micro-urchins and nanowires as a free-standing electrode with high loading for high-performance lithium-ion batteries. Nanoscale 9:14979–14989.  https://doi.org/10.1039/c7nr03979d CrossRefGoogle Scholar
  22. 22.
    Shivakumara S, Munichandraiah N (2017) Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte. Solid State Commun 260:34–39.  https://doi.org/10.1016/j.ssc.2017.05.015 CrossRefGoogle Scholar
  23. 23.
    Masikhwa TM, Madito MJ, Bello A, Dangbegnon JK, Manyala N (2017) High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. J Colloid Interface Sci 488:155–165.  https://doi.org/10.1016/j.jcis.2016.10.095 CrossRefGoogle Scholar
  24. 24.
    Liu S, An C, Chang X, Guo H, Zang L, Wang Y, Yuan H, Jiao L (2018) Optimized core–shell polypyrrole-coated NiCo2O4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor. J Mater Sci 53:2658–2668.  https://doi.org/10.1007/s10853-017-1742-x CrossRefGoogle Scholar
  25. 25.
    Lv HP, YuanY XQJ, Liu HM, Wang YG, Xia YY (2018) Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. J Power Sources 398:167–174.  https://doi.org/10.1016/j.jpowsour.2018.07.059 CrossRefGoogle Scholar
  26. 26.
    Tian Z, Wang XM, Li BX, Li HJ, Wu YC (2019) High rate capability electrode constructed by anchoring CuCo2S4 on graphene aerogel skeleton toward quasi-solid-state supercapacitor. Electrochim Acta 298:321–329.  https://doi.org/10.1016/j.electacta.2018.12.103 CrossRefGoogle Scholar
  27. 27.
    Wang HY, Li RY, Li M, Li ZJ (2018) Flower-like Fe2O3@multiple graphene aerogel for high-performance supercapacitors. J Alloys Compd 742:759–768.  https://doi.org/10.1016/j.jallcom.2018.01.187 CrossRefGoogle Scholar
  28. 28.
    Han T, Jiang L, Jiu H, Chang J (2017) Hydrothermal synthesis of the clustered network-like Ni3S2-Co9S8 with enhanced electrochemical behavior for supercapacitor electrode. J Phys Chem Solids 110:1–8.  https://doi.org/10.1016/j.jpcs.2017.05.024 CrossRefGoogle Scholar
  29. 29.
    Wen SY, Yu L, Bai HY, Shao R, Xu W, Shi WD (2018) Full synergistic effect of hydrothermal NiCo2O4 nanosheets/CuCo2O4 nanocones supported on Ni foam for high-performance asymmetric supercapacitors. J Solid State Chem 262:327–334.  https://doi.org/10.1016/j.jssc.2018.03.023 CrossRefGoogle Scholar
  30. 30.
    Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14:831–838.  https://doi.org/10.1021/nl404199v CrossRefGoogle Scholar
  31. 31.
    Han DD, Xu PC, Jing XY, Wang J, Song DL, Liu JY, Zhang ML (2013) Facile approach to prepare hollow core-shell NiO microspherers for supercapacitor electrodes. J Solid State Chem 203:60–67.  https://doi.org/10.1016/j.jssc.2013.04.009 CrossRefGoogle Scholar
  32. 32.
    Zhang J, Lin J, Wu J, Xu R, Le M, Gong C, Chen X, Zhou P (2016) Excellent electrochemical performance hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for asymmetric supercapacitors. Electrochim Acta 207:87–96.  https://doi.org/10.1016/j.electacta.2016.04.068 CrossRefGoogle Scholar
  33. 33.
    Wang DW, Li F, Cheng HM (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 185:1563–1568.  https://doi.org/10.1016/j.jpowsour.2008.08.032 CrossRefGoogle Scholar
  34. 34.
    Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842.  https://doi.org/10.1021/nn101754k CrossRefGoogle Scholar
  35. 35.
    Lu XF, Wu DJ, Li RZ, Li Q, Ye SH, Tong YX, Li GR (2014) Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J Mater Chem A 2:4706–4713.  https://doi.org/10.1039/C3TA14930G CrossRefGoogle Scholar
  36. 36.
    Ji C, Liu F, Xu L, Yang S (2017) Urchin-like NiCo2O4 hollow microspheres and FeSe2 micro-snowflakes for flexible solid-state asymmetric supercapacitors. J Mater Chem A 5:5568–5576.  https://doi.org/10.1039/C6TA11001K CrossRefGoogle Scholar
  37. 37.
    Ramadoss A, Kang KN, Ahn HJ, Kim SI, Ryu ST, Jang JH (2016) Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers. J Mater Chem A 4:4718–4727.  https://doi.org/10.1039/c5ta10781d CrossRefGoogle Scholar
  38. 38.
    Liu Y, Wen SY, Shi WD (2018) Co3S4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors. Mater Lett 214:194–197.  https://doi.org/10.1016/j.matlet.2017.12.014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hongfang Jiu
    • 1
    Email author
  • Liya Jiang
    • 1
  • Yuying Gao
    • 1
  • Qing Zhang
    • 1
  • Lixin Zhang
    • 2
  1. 1.School of ScienceNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanPeople’s Republic of China

Personalised recommendations