Advertisement

Ionics

pp 1–14 | Cite as

Carbon-based lanthanum nickelate material La2−xyNdxPryNiO4+δ (x = 0, 0.3, and 0.5; y = 0 and 0.2) as a bifunctional electrocatalyst for oxygen reduction in alkaline media

  • Sabah Amira
  • Mosbah FerkhiEmail author
  • Ammar Khaled
  • Fabrice Mauvy
  • Jean-Claude Grenier
  • Laurent Houssiau
  • Jean-Jacques Pireaux
Original Paper

Abstract

The kinetics and mechanism of oxygen reduction reaction (ORR) in alkaline medium are studied on lanthanum nickelate materials La2−xyNdxPryNiO4±δ (x = 0, 0.3 and 0.5; y = 0 and 0.2) using the electrochemical technique of the rotating disk electrode in a 0.5-M solution of NaOH. The oxide powders are synthesized by the citrate–nitrate method. Structural and surface characterizations are performed by X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS), while the morphology is studied by scanning electron microscopy (SEM). Electrochemical studies are carried out by linear voltamperometry, cyclic voltamperometry, and impedance spectroscopy. The doped and undoped electrocatalyst composites (La2−xyNdxPryNiO4±δ/C), made of the rare earth nickel oxides mixed with carbon black (Vulcan XC-72(C)), are deposited as a thin layer on a glassy carbon substrate. At room temperature, the undoped electrocatalyst La2NiO4±δ material shows single-step kinetics unlike the doped materials. The doping by the rare earths Nd or/and Pr significantly enhances the electrical conductivity of the electrode under air and the diffusion of oxygen. On the other hand, the steric hindrance between the atomic oxygen orbital (π-orbital (O2)–π-orbital (O2)) and the dz2–orbital (Ni)–π-orbital (O2) influences the training model of the liaison (dz2(Ni)–π (O2)). The structure, oxygen adsorption, and oxidation states of the catalyst elements have a large influence on the mechanism and kinetics of the ORR. The LNNO3/C and LNPNO5/C electrocatalysts have better electrocatalytic performances, which allow them to be used as a bifunctional electrocatalyst for the reduction of oxygen in alkaline media.

Keywords

ORR mechanism MIEC Impedance spectroscopy XPS analysis Electrocatalyst materials 

Notes

References

  1. 1.
    Yeager E (1984) Electrocatalysts for O2 reduction. Electrochimica Acta 29(11):1527–1537CrossRefGoogle Scholar
  2. 2.
    Cheriti M, Kahoul A (2012) Double perovskite oxides Sr2MMoO6 (M = Fe and Co) as cathode materials for oxygen reduction in alkaline medium. Mater Res Bull 47(1):135–141CrossRefGoogle Scholar
  3. 3.
    Wen Q, Wang SY, Yan J, Cong LJ, Chen Y, Xi HY (2014) Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells. Bioelectrochemistry 95:23–28CrossRefGoogle Scholar
  4. 4.
    Wu QM, Jiang LH, Qi LT, Wang ED, Sun GQ (2014) Electrocatalytic performance of Ni modified MnOx/C composites toward oxygen reduction reaction and their application in Zn-air battery. Hydrogen Energy 39(7):3423–3432CrossRefGoogle Scholar
  5. 5.
    Ma YJ, Wang H, Ji S, Goh J, Feng HQ, Wang RF (2014) Highly active Vulcan carbon composite for oxygen reduction reaction in alkaline medium. Electrochim Acta 133:391–398CrossRefGoogle Scholar
  6. 6.
    Chang Y-M, Wu P-W, Wu C-Y, Hsieh Y-C (2009) Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte. J Power Sources 189:1003–1007CrossRefGoogle Scholar
  7. 7.
    Zhang Z, Lim SH, Li B, Wang X, Liu Z (2014) Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl Mater Interfaces 6:4–11Google Scholar
  8. 8.
    Ida S, Thapa AK, Hidaka Y, Okamoto Y, Matsuka M, Hagiwara H, Ishihara T (2012) Manganese oxide with a card-house-like structure reassembled from nanosheets for rechargeable Li-air battery. Power Sources 203:159–164CrossRefGoogle Scholar
  9. 9.
    Jin S, Hubert AG, Naoaki Y, Haruyuki N, John BG, Yang SH (2011) Design principles for oxygen- reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem 3:546–550CrossRefGoogle Scholar
  10. 10.
    Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. Am Chem Soc 134:9082–9085CrossRefGoogle Scholar
  11. 11.
    Garcıa de la Cruz RM, Falcón H, Peña MA, Fierro JLG (2001) Role of bulk and surface structures of La1−xSrxNiO3 perovskite-type oxides in methane combustion. Appl Catal B Environ 33:45–55CrossRefGoogle Scholar
  12. 12.
    Hammouche A, Kahoul A, Sauer DU, De Doncker RW (2006) Influential factors on oxygen reduction at La1−xCaxCoO3 electrodes in alkaline electrolyte. J Power Sources 153:239–244CrossRefGoogle Scholar
  13. 13.
    Fulmer TA, Dondlinger J, Langell AM (2014) Passivation of the La2NiMnO6 double perovskite to hydroxylation by excess nickel, and the fate of the hydroxylated surface upon heating. Appl Surf Sci 305:544–553CrossRefGoogle Scholar
  14. 14.
    Chen Z, Yu A, Higgins D, Li H, Wang H (2012) Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett 12:1946–1952CrossRefGoogle Scholar
  15. 15.
    Ferkhi M, Rekaika M, Khaled A, Amira S, Cassir M, Pireaux J-J (2017) Study of the oxygen reduction reaction at low temperature on the Nd1.98Sr0.02Ni0.99Co0.01O4±δ material. Electroanal Chem 807:154–161CrossRefGoogle Scholar
  16. 16.
    Ferkhi M, Rekaika M, Khaled A, Cassir M, Pireaux J-J (2017) Neodymium nickelate Nd2-xSrxNi1-yCoyO4±δ (x and y = 0 or 0.05) as cathode materials for the oxygen reduction reaction. Electrochim Acta 229:281–290CrossRefGoogle Scholar
  17. 17.
    Hua J, Wang L, Shi L, Huanga H (2015) Oxygen reduction reaction activity of LaMn1-xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim Acta 161:115–123CrossRefGoogle Scholar
  18. 18.
    Hermann V, Dutriat D, Muller S, Comninellis C (2000) Mechanistic studies of oxygen reduction at La0.6Ca0.4CoO3-activated carbon electrodes in a channel flow cell. Electrochim Acta 46:365–372CrossRefGoogle Scholar
  19. 19.
    Poux T, Napolskiy FS, Dintzer T, Kéranguéven G, Istomin SY, Antipov EV, Savinovaa ER (2012) Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today 189:83–92CrossRefGoogle Scholar
  20. 20.
    Javad S, fakhri A, Meunier J-L, Berk D (2014) Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: minimization of oxygen evolution. J Power Sources 272:248–258CrossRefGoogle Scholar
  21. 21.
    Kahoula A, Hammouchea A, Naˆamounea F, Chartierb P, Poilleratb G, Koenigb JF (2000) Solvent effect on synthesis of perovskite-type La1-xCaxCoO3 and their electrochemical properties for oxygen reactions. Mater Res Bull 35:1955–1966CrossRefGoogle Scholar
  22. 22.
    Fabbri E, Mohamed R, Levecque P, Conrad O, Kötz R, Schmidt T-J (2014) Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and carbon toward oxygen reduction in alkaline media. ACS Catal 4:1061–1070CrossRefGoogle Scholar
  23. 23.
    Bagotzky VS, Shumilova NA, Khrushcheva EL (1976) Electrochemical oxygen reduction on oxide catalysts. Electrochim Acta 21:919–924CrossRefGoogle Scholar
  24. 24.
    Bian WY, Yang ZR, Strasser P, Yang RZ (2014) A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. J Power Sources 250:196–203CrossRefGoogle Scholar
  25. 25.
    Li L, Chang Z-w, and Zhang X-B (2017) Recent progress on the development of metal-air batteries. Review; Advanced Sustainable Systems. 1700036Google Scholar
  26. 26.
    Wang D, Chen X, Evans DG, Yang W (2013) Well-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Nanoscale 5:5312–5315CrossRefGoogle Scholar
  27. 27.
    Li W, Yang D, Chen H, Gao Y, Li H (2015) Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium. Electrochim Acta 165:191–197CrossRefGoogle Scholar
  28. 28.
    Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Molecular Catalysis 38:5–25CrossRefGoogle Scholar
  29. 29.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York, pp 21–112Google Scholar
  30. 30.
    Amira S, Ferkhi M, Belghobsi M, Khaled A , Mauvy F, Grenier J-C Synthesis, characterization and electrochemical behavior of a new Nd1.9Sr0.1Ni0.9Co0.1O4 ± δ material as electrocatalyst for the oxygen reduction reaction, Ionic Springer.  https://doi.org/10.1007/s11581-019-02922-9
  31. 31.
    Boehm E, Bassat JM, Dordor JM, Mauvy F, Grenier JC, Stevens P (2005) Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4+δ oxides. Solid State Ionics 176:2717–2725CrossRefGoogle Scholar
  32. 32.
    Sayers R, Skinner SJ (2010) Evidence for the catalytic oxidation of La2NiO4+δ. Mater Chem 21:414–419CrossRefGoogle Scholar
  33. 33.
    Akbari-Fakhrabadi A, Toledo EG, Canales JI, Meruane V, Chan SH, Gracia-Pinilla MA (2018) Effect of Sr2+ and Ba2+ doping on structural stability and mechanical properties of La2NiO4+δ. Ceram Int 44:10551–10557CrossRefGoogle Scholar
  34. 34.
    Vibhu V, Rougier A, Nicollet C, Flura A, Grenier JG, Bassat JM (2015) La2−xPrxNiO4+δ as suitable cathodes for metal supported SOFCs. Solid State Ionics 278:32–37CrossRefGoogle Scholar
  35. 35.
    Fierro JLG (1990) Structure and composition of perovskite surface in relation to adsorption and catalytic properties. Catal Today 8:153–174CrossRefGoogle Scholar
  36. 36.
    Fierro JLG, Tejuca LG (1987) Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS. Appl Surf Sci 27:453–457CrossRefGoogle Scholar
  37. 37.
    Mickevicius S, Grebinskij S, Bondarenka V, Vengalis B, Sliuziené K, Orlowski BA, Osinniy V, Drube W (2006) Investigation of epitaxial LaNiO3-d thin films by high-energy XPS. Alloys Compd 423:107–111CrossRefGoogle Scholar
  38. 38.
    Moulder F, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie, MN, p 44Google Scholar
  39. 39.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1976) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Physical Electronics Division, Eden PrairieGoogle Scholar
  40. 40.
    Kang HW, Lim SN, Park SB (2017) Co-doping schemes to enhance H2 evolution under visible light irradiation over SrTiO3: Ni/M (M= La or Ta) prepared by spray pyrolysis. Hydrogen Energy 37:5540–5549CrossRefGoogle Scholar
  41. 41.
    Han XP, Zhang TR, Du J, Cheng FY (2013) Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chem Sci 4:368–376CrossRefGoogle Scholar
  42. 42.
    Ge X, Du Y, Li B, Hor TSA, Sindoro M, Zong Y, Zhang H, Liu Z (2016) Intrinsically conductive perovskite oxides with enhanced stability and electrocatalytic activity for oxygen reduction reactions. ACS Catal 6:7865–7871CrossRefGoogle Scholar
  43. 43.
    Ge X, Goh F, T W, Li B, Hor TSA, Zhang J, Xiao P, Liu Z (2015) Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co0.55Mn0.45)0.99O3−δ nanorod/graphene hybrid in alkaline media. Nanoscale 7:9046–9054CrossRefGoogle Scholar
  44. 44.
    Fabbri E, Nachtegaal M, Cheng X, Schmidt T-J (2015) Superior bifunctional electrocatalytic activity of Ba0.5Sr0.5Co0.8Fe0.2O/carbon composite electrodes: insight into the local electronic structure. Adv Energy Mater 5:1402033CrossRefGoogle Scholar
  45. 45.
    Prabu M, Ramakrishnan P, Ganesan P, Manthiram A, Shanmugam S (2015) LaTi0.65Fe0.35O3−δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries. Nano Energy 15:92–103CrossRefGoogle Scholar
  46. 46.
    Zhan Y, Xu C, Lu M, Liu Z, Lee JY (2014) Mn and Co co-substituted Fe3O4 nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution. J Mater Chem A 2:16217–16223CrossRefGoogle Scholar
  47. 47.
    Liu Z, Su Q, Diao P, Li F (2017) A composite of pyrrole-doped carbon black modified with Co3O4 for efficient electrochemical oxygen reduction reaction. ChemElectroChem 4:2260–2268CrossRefGoogle Scholar
  48. 48.
    Lee DU, Park MG, Park HW, Seo MH, Wang X, Chen Z (2015) Highly active and durable nanocrystal-decorated bifunctional electrocatalyst for rechargeable zinc-air batteries. ChemSusChem 8:3129–3138CrossRefGoogle Scholar
  49. 49.
    Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786CrossRefGoogle Scholar
  50. 50.
    Zhu H, Zhang S, Huang Y-X, Wu L, Sun S (2013) Monodisperse MxFe3–xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett 13:2947–2951CrossRefGoogle Scholar
  51. 51.
    Tang Q, Jiang L, Qi J, Jiang Q, Wang S, Sun G (2011) One step synthesis of carbon-supported Ag/MnyOx composites for oxygen reduction reaction in alkaline media. Appl Catal B Environ 104:337–345CrossRefGoogle Scholar
  52. 52.
    Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S (2015) Cobalt sulfide nanoparticles grown on nitrogen and sulfur co-doped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal 5:3625–3637CrossRefGoogle Scholar
  53. 53.
    Davari E, Johnson AD, Mittal A, Xiong M, Ivey DG (2016) Manganese-cobalt mixed oxide film as a bifunctional catalyst for rechargeable zinc-air batteries. Electrochim Acta 211:735–743CrossRefGoogle Scholar
  54. 54.
    Su C, Yang T, Zhou W, Wang W, Xu X, Shao Z (2016) Pt/C–LiCoO2 composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. J Mater Chem A 4(1016):4516–4524CrossRefGoogle Scholar
  55. 55.
    Wang Y, Liu Y, Lu X, Li Z, Zhang H, Cui X, Deng Y (2012) Silver-molybdate electrocatalysts for oxygen reduction reaction in alkaline media. Electrochem Commun 20:171–174CrossRefGoogle Scholar
  56. 56.
    Qiu Y, Yu J, Shi T, Zhou X, Bai X, Huang JY (2011) Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J Power Sources 196:9862–9867CrossRefGoogle Scholar
  57. 57.
    Xiong C, Wei Z, Hu B, Chen S, Li L, Guo L, Wang X (2012) Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction. J Power Sources 215:216–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sabah Amira
    • 1
    • 2
  • Mosbah Ferkhi
    • 1
    • 2
    • 3
    Email author
  • Ammar Khaled
    • 2
  • Fabrice Mauvy
    • 3
  • Jean-Claude Grenier
    • 3
  • Laurent Houssiau
    • 4
  • Jean-Jacques Pireaux
    • 4
  1. 1.Département de Chimie, Faculté des Sciences Exactes et InformatiqueUniversité Mohamed Seddik Ben Yahia - JijelJijelAlgeria
  2. 2.Laboratoire d’Etude sur les Interactions Matériaux-Environnement (LIME)Université Mohamed Seddik Ben Yahia de JijelJijelAlgeria
  3. 3.CNRS, Université de BordeauxICMCBPessacFrance
  4. 4.Namur Institute of Structured Matter (NISM)University of NamurNamurBelgium

Personalised recommendations