Advertisement

Ionics

pp 1–8 | Cite as

One-step synthesis of 3D-interconnected porous carbons derived from ephedra herb using calcium chloride and urea as co-activation for high-performance supercapacitors

  • Jingjiang LiuEmail author
  • Ruixue Kang
  • Zhiwei Yan
  • Jianglin Guan
  • Zhengjun QuanEmail author
Original Paper
  • 17 Downloads

Abstract

In this article, we propose a one-step strategy, utilizing calcium chloride and urea as co-activation, to synthesize 3D-interconnected porous carbon (3D-IPC) from ephedra herb. The 3D-IPC-based electrode displays excellent electrochemical performance for supercapacitors, such as a high specific capacitance of 240 F g−1 at 0.5 A g−1 and good rate capability. Especially, the symmetric supercapacitor assembled based on the 3D-IPC electrode material presents considerable energy density of 12.6 W h kg−1 at a power density 225 W kg−1, and 6.0 W h kg−1 at 9000 W kg−1 in 0.5 M Li2SO4 electrolyte. On the one hand, the urea was utilized as both activating agent for microporous pore formation in pyrolysis and nitrogen source to nitrogen doped into the 3D-IPC framework, as well as ideal synchronous carbonization and graphitization. On the other hand, ephedra herb collected from the Gobi Desert is reused as a high-value carbon material.

Graphical abstract

3D-interconnected porous carbons, obtaining from a one-step calcium chloride and urea as co-activation activation of ephedra herb, exhibit high capacitance, excellent rate and cycle performance for supercapacitors

Keywords

Supercapacitors Carbon materials CaCl2 and urea activation Ephedra herb 

Notes

Acknowledgments

We thank Professor Erxin Ren for measurements.

Funding information

This study was supported by the National Natural Science Foundation of China (No. 21562036), the Scientific Research Project of Institutions of Higher Learning in Gansu Province (No. 2018B-112), and the Fundamental Research Funds of Gansu Police Vocational College (No. 2017GJYXM09)

Compliance with ethical standards

Conflicts of interest

There authors declare that they have no conflicts of interest.

Supplementary material

11581_2019_2962_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1154 kb)

References

  1. 1.
    Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 120:379–382CrossRefGoogle Scholar
  2. 2.
    Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRefGoogle Scholar
  3. 3.
    Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRefGoogle Scholar
  4. 4.
    Yang S, Feng X, Wang L, Tang K, Maier J, Müllen K (2010) Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed 49:4795–4799CrossRefGoogle Scholar
  5. 5.
    Liang Q, Li Z, Yu X, Huang ZH, Kang F, Yang QH (2015) Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv Mater 27:4634–4639CrossRefGoogle Scholar
  6. 6.
    Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172CrossRefGoogle Scholar
  7. 7.
    Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, Ni K, Tao Z, Ikram M, Ji H, Zhu Y (2016) A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv Mater 28:5222–5228CrossRefGoogle Scholar
  8. 8.
    Huang TF, Zhao CH, Zheng RJ, Zhang Y, Hu ZB (2015) Facilely synthesized porous ZnCo2O4 rodlike nanostructure for high-rate supercapacitors. Ionics 21:3109–3115CrossRefGoogle Scholar
  9. 9.
    Huang TF, Zhao CH, Qiu ZH, Luo JS, Hu ZB (2017) Hierarchical porous ZnMn2O4 synthesized by the sucrose-assisted combustion method for high-rate supercapacitors. Ionics 23:139–146CrossRefGoogle Scholar
  10. 10.
    Noked M, Okashy S, Zimrin T, Aurbach D (2012) Composite carbon nanotube/carbon electrodes for electrical double-layer super capacitors. Angew Chem Int Ed 51:1568–1571CrossRefGoogle Scholar
  11. 11.
    Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Müllen K (2012) Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134:19532–19535CrossRefGoogle Scholar
  12. 12.
    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330CrossRefGoogle Scholar
  13. 13.
    Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127CrossRefGoogle Scholar
  14. 14.
    Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourga ME, Lubersa AM (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38:226–252CrossRefGoogle Scholar
  15. 15.
    Zhang L, Yang X, Zhang F, Long G, Zhang T, Leng K, Zhang Y, Huang Y, Ma Y, Zhang M, Chen Y (2013) Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J Am Chem Soc 135:5921–5929CrossRefGoogle Scholar
  16. 16.
    Li J, Liu K, Gao X, Yao B, Huo K, Cheng Y, Cheng X, Chen D, Wang B, Sun W, Ding D, Liu M, Huang L (2015) Oxygen- and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl Mater Interfaces 7:24622–24628CrossRefGoogle Scholar
  17. 17.
    You B, Jiang J, Fan S (2014) Three-dimensional hierarchically porous all-carbon foams for supercapacitor. ACS Appl Mater Interfaces 6:15302–15308CrossRefGoogle Scholar
  18. 18.
    Wang Y, Zhang JS, Wang XC, Antonietti M, Li HR (2010) Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. Angew Chem Int Ed 49:3356–3359CrossRefGoogle Scholar
  19. 19.
    Lin Z, Wang X (2013) Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew Chem Int Ed 52:1735–1738CrossRefGoogle Scholar
  20. 20.
    Liu JJ, Deng YF, Li XH, Wang LF (2016) Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustain Chem Eng 4:177–187CrossRefGoogle Scholar
  21. 21.
    Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun 48:12017–12019CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Mori T, Ye J, Antonietti M (2010) Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc 132:6294–6295CrossRefGoogle Scholar
  23. 23.
    Zhang JS, Sun JH, Maeda K, Domen K, Liu P, Antonietti M, Fu XZ, Wang XC (2011) Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ Sci 4:675–678CrossRefGoogle Scholar
  24. 24.
    Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ, Cheng HM (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648CrossRefGoogle Scholar
  25. 25.
    Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375CrossRefGoogle Scholar
  27. 27.
    Zhao J, Lai H, Lyu Z, Jiang Y, Xie K, Wang X, Wu Q, Yang L, Jin Z, Ma Y, Liu J, Hu Z (2015) Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv Mater 27:3541–3545CrossRefGoogle Scholar
  28. 28.
    Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173CrossRefGoogle Scholar
  29. 29.
    Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132–4140CrossRefGoogle Scholar
  30. 30.
    Wu X, Jiang L, Long C, Fan Z (2015) From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13:527–536CrossRefGoogle Scholar
  31. 31.
    Aboutashed EA, El-Alfy AT, Khan IA, Walker L (2003) Ephedra in perspective—a current review. Phytother Res 17:703–712CrossRefGoogle Scholar
  32. 32.
    Kim HK, Choi YH, Erkelens C, Lefeber AWM, Verpoorte R (2005) Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis. Chem Pharm Bull 53:105–109CrossRefGoogle Scholar
  33. 33.
    Ryu Z, Zheng J, Wang M, Zhang B (1999) Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon 37:1257–1264CrossRefGoogle Scholar
  34. 34.
    Peng H, Ma G, Sun K, Mu J, Lei Z (2014) One-step preparation of ultrathin nitrogen-doped carbon nanosheets with ultrahigh pore volume for high-performance supercapacitors. J Mater Chem A 2:17297–17301CrossRefGoogle Scholar
  35. 35.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  36. 36.
    Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480CrossRefGoogle Scholar
  37. 37.
    Morelos-Gómez A, Mani-González PG, Aliev AE, Muñoz-Sandoval E, Herrera-Gómez A, Zakhidov AA, Terrones H, Endo M, Terrones M (2014) Controlling the optical, electrical and chemical properties of carbon inverse opal by nitrogen doping. Adv Funct Mater 24:2612–2619CrossRefGoogle Scholar
  38. 38.
    Li Z, Zhang L, Amirkhiz BS, Tan XH, Xu ZW, Wang HL, Olsen BC, Holt CMB, Mitlin D (2012) Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv Energy Mater 2:431–437CrossRefGoogle Scholar
  39. 39.
    Biniak S, Szymański G, Siedlewski J, Światkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810CrossRefGoogle Scholar
  40. 40.
    Ouyang T, Cheng K, Gao YY, Kong SY, Ye K, Wang GL, Cao DX (2016) Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials. J Mater Chem A 4:9832–9843CrossRefGoogle Scholar
  41. 41.
    An YF, Li ZM, Yang YY, Guo BS, Zhang ZY, Wu HY, Hu ZG (2017) Synthesis of hierarchically porous nitrogen-doped carbon nanosheets from agaric for high-performance symmetric supercapacitors. Adv Mater Interface 4:1700033CrossRefGoogle Scholar
  42. 42.
    Zou KX, Deng YF, Chen JP, Qian YX, Yang YW, Li YW, Chen GH (2018) Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J Power Sources 378:579–588CrossRefGoogle Scholar
  43. 43.
    Peng H, Ma GF, Sun KJ, Mu JJ, Zhang Z, Lei ZQ (2014) Facile synthesis of poly(p-phenylenediamine)-derived three-dimensional porous nitrogen-doped carbon networks for high performance supercapacitors. J Phys Chem C 118(51):29507–29516CrossRefGoogle Scholar
  44. 44.
    Yu DF, Chen C, Zhao GY, Sun L, Du BS, Zhang H, Li Z, Sun Y, Besenbacher F, Yu M (2018) Biowaste-derived hierarchical porous carbon nanosheets for ultrahigh power density supercapacitors. ChemSusChem 11:1–9CrossRefGoogle Scholar
  45. 45.
    Zhang YQ, Liu X, Wang SL, Li L, Dou SX (2017) Bio-nanotechnology in high-performance supercapacitors. Adv Energy Mater 7:1700592CrossRefGoogle Scholar
  46. 46.
    Zou KX, Tan HQ, Wang LM, Qian YX, Deng YF, Chen GH (2019) Biomass waste-derived nitrogen-rich hierarchical porous carbon offering superior capacitive behavior in an environmentally friendly aqueous MgSO4 electrolyte. J Colloid Interface Sci 537:475–485CrossRefGoogle Scholar
  47. 47.
    Yan J, Liu J, Fan Z, Wei T, Zhang L (2012) High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50:2179–2188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Gansu Police Vocational CollegeLanzhouChina
  2. 2.Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations