Advertisement

Ionics

, Volume 25, Issue 8, pp 3971–3978 | Cite as

Preparation and characterisation of ion-conductive unsaturated polyester resins for the on-site production of resistivity sensors

  • Pia B. Sassmann
  • Oliver WeicholdEmail author
Original Paper
  • 39 Downloads

Abstract

Ion-conductive unsaturated polyesters were synthesised from poly(ethylene oxide) and maleic anhydride for use in the development of improved methods for the structural health monitoring of infrastructural buildings. The unsaturated polyesters (UPs) were cross-linked with styrene using a redox initiator in the presence of LiClO4. Electrochemical impedance spectroscopy was used to study the effects of initiator and styrene concentration as well as the EO:Li+ ratio. Increasing the initiator or styrene content results in an increased resistivity of the final materials. Cross-linking with styrene does not appear to cause microphase separation into pure UP and polystyrene phases, since the resulting resistivities are significantly lower than predicted by the rule of mixtures. For all temperatures under investigation (0 to 60 °C), the lowest resistivities were found for a EO:Li+ ratio of 50 (400 Ω m at 22 °C), which is in accordance with previous findings. The electrical properties of the present materials are determined by diffusion-controlled process in such a way polarisation prevails at high temperatures. In a proof of principle experiment, one selected UP formulation was injected into drill holes in concrete and cured at different temperatures and moisture conditions. This system reliably monitors the resistivity against an embedded reference electrode.

Keywords

Ion-conductive polyester Unsaturated polyester Impedance spectroscopy Corrosion monitoring Concrete 

Notes

Acknowledgements

The authors thank Christian Helm, Markus Zander, Natkritta Hyppe, and Sarah Michael for assisting at the practical implementation.

Funding sources

The work was funded by the Federal Ministry of Economic Affairs and Energy through the ZIM programme (Zentrales Innovationsprogamm Mittelstand) under Grant No. KF2669716KM4.

Supplementary material

11581_2019_2958_MOESM1_ESM.doc (735 kb)
ESM 1 (DOC 735 kb)

References

  1. 1.
    Mark HF (2013) Encyclopedia of polymer science and technology. Wiley, ConciseGoogle Scholar
  2. 2.
    Yang J, Liu Y, Liu S, Li L, Zhang C, Liu T (2017) Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Mater Chem Front 1(2):251–268.  https://doi.org/10.1039/C6QM00150E
  3. 3.
    Lee BL (1992) Electrically conductive polymer composites and blends. Polym Eng Sci 32(1):36–42.  https://doi.org/10.1002/pen.760320107 CrossRefGoogle Scholar
  4. 4.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J Chem Soc Chem Commun 16:578–580.  https://doi.org/10.1039/C39770000578 CrossRefGoogle Scholar
  5. 5.
    Livi F, Carlé JE, Bundgaard E (2015) Thiophene in conducting polymers: synthesis of poly(thiophene)s and other conjugated polymers containing thiophenes, for application in polymer solar cells. In: Joule JA (ed) Thiophenes. Springer International Publishing, Cham, pp 203–226.  https://doi.org/10.1007/7081_2014_128 Google Scholar
  6. 6.
    Orchard BJ, Freidenreich B, Tripathy SK (1986) Structural study of two conducting polymers: poly(pyrrole) and poly(thiophene). Polymer 27(10):1533–1541.  https://doi.org/10.1016/0032-3861(86)90100-X CrossRefGoogle Scholar
  7. 7.
    Cowie JMG, Cree SH (1989) Electrolytes dissolved in polymers. Annu Rev Phys Chem 40(1):85–113.  https://doi.org/10.1146/annurev.pc.40.100189.000505 CrossRefGoogle Scholar
  8. 8.
    Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3(38):19218–19253.  https://doi.org/10.1039/C5TA03471J CrossRefGoogle Scholar
  9. 9.
    Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L, Kalita M, Plewa-Marczewska A, Bitner A, Wieczorek P, Trzeciak T, Kasprzyk M, Łężak P, Zukowska Z, Zalewska A, Wieczorek W (2015) Electrolytes for Li-ion transport—review. Solid State Ionics 276:107–126.  https://doi.org/10.1016/j.ssi.2015.02.006 CrossRefGoogle Scholar
  10. 10.
    Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448.  https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I CrossRefGoogle Scholar
  11. 11.
    Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7(5):319–327.  https://doi.org/10.1002/pi.4980070505
  12. 12.
    Hu CP, Wright PV (1989) Ionic conductivity of unsaturated polyester resin networks containing LiCIO4. Br Polym J 21(5):421–427.  https://doi.org/10.1002/pi.4980210511
  13. 13.
    Fang B, Hu CP, Ying SK (1993) Structure and ionic conductivity of graft polyester networks containing lithium perchlorate. Eur Polym J 29(6):799–803.  https://doi.org/10.1016/0014-3057(93)90330-I CrossRefGoogle Scholar
  14. 14.
    Lin C-K, Wu ID (2011) Investigating the effect of interaction behavior on the ionic conductivity of polyester/LiClO4 blend systems. Polymer 52(18):4106–4113.  https://doi.org/10.1016/j.polymer.2011.06.055 CrossRefGoogle Scholar
  15. 15.
    Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143.  https://doi.org/10.1016/j.progpolymsci.2017.12.004 CrossRefGoogle Scholar
  16. 16.
    Lee Y-C, Ratner MA, Shriver DF (2001) Ionic conductivity in the poly(ethylene malonate)/lithium triflate system. Solid State Ionics 138(3):273–276.  https://doi.org/10.1016/S0167-2738(00)00791-8 CrossRefGoogle Scholar
  17. 17.
    Dupon RPB, Ratner MA, Shriver DF (1984) Ion transport in the polymer electrolytes formed by poly(ethylene succinate) and lithium tetrafluoroborate. J Electrochem Soc 131(3):589.  https://doi.org/10.1149/1.2115630 CrossRefGoogle Scholar
  18. 18.
    Juraschek T, Weichold O (2017) Development of an electrochromic device triggered by the macrocell current in chloride-induced corrosion of steel-reinforced concrete. J Phys Org Chem 30(9):e3739.  https://doi.org/10.1002/poc.3739 CrossRefGoogle Scholar
  19. 19.
    Behrens D (1990) Dechema corrosion handbook: corrosive agents and their interaction with materials, vol Bd. 6. Dechema, FrankfurtGoogle Scholar
  20. 20.
    Raupach M, Meessen J (2000) Korrosion gleich erkannt: Reduzierung von Aufwand und Kosten durch Potenzialmessungen. Bautenschutz+ Bausanierung 23(2):18–25Google Scholar
  21. 21.
    Reichling K (2015) Bestimmung und Bewertung des elektrischen Widerstands von Beton mit geophysikalischen Verfahren. Beuth, Berlin [u.a]Google Scholar
  22. 22.
    Grantham M (2016) Concrete solutions. CRC Press, Boca RatonCrossRefGoogle Scholar
  23. 23.
    Dauberschmidt C, Harnisch J, Raupach M (2003) Messung des Wassergehaltes von Beton mit Hilfe nachträglich eingebauter Multiringelektroden. Kurzbericht 96. http://publications.rwth-aachen.de/record/48231/files/48231.pdf
  24. 24.
    Hunkeler F (1993) Elektrischer Widerstand von Mörtel und Beton. Schweizer Ingenieur und Architekt 111 (43):21. https://doi.org/10.5169/seals-78262Google Scholar
  25. 25.
    Delahaye N, Marais S, Saiter JM, Metayer M (1998) Characterization of unsaturated polyester resin cured with styrene. J Appl Polym Sci 67(4):695–703.  https://doi.org/10.1002/(SICI)1097-4628(19980124)67:4<695::AID-APP12>3.0.CO;2-R CrossRefGoogle Scholar
  26. 26.
    Urban MW, Gaboury SR, Provder T (1991) Spectroscopic evidence for styrene homo- polymerization during the crosslinking of styrene/polyester. Polymer Comm 32(6):171. https://doi.org/10263-6476/91/060171-05Google Scholar
  27. 27.
    Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930CrossRefGoogle Scholar
  28. 28.
    Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook. Wiley, HobokenGoogle Scholar
  29. 29.
    Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85.  https://doi.org/10.1016/j.progpolymsci.2016.03.001 CrossRefGoogle Scholar
  30. 30.
    Builes DH, Tercjak A, Mondragon I (2012) Nanostructured unsaturated polyester modified with poly[(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)] triblock copolymer. Polymer 53(17):3669–3676.  https://doi.org/10.1016/j.polymer.2012.06.018 CrossRefGoogle Scholar
  31. 31.
    Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069.  https://doi.org/10.1039/C6TA02621D CrossRefGoogle Scholar
  32. 32.
    Watanabe M, Ogata N (1987) Ionic conductivity of polymer electrolytes and future applications. Brit Polym J 20:181-192.  https://doi.org/10.1002/pi.4980200304
  33. 33.
    Angell CA (1983) Fast ion motion in glassy and amorphous materials. Solid State Ionics 9-10(Part 1):3–16.  https://doi.org/10.1016/0167-2738(83)90206-0 CrossRefGoogle Scholar
  34. 34.
    Zia AI, Mukhopadhyay SC (2016) Electrochemical sensing: carcinogens in beverages. Springer International Publishing, New YorkGoogle Scholar
  35. 35.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications. Wiley, HobokenCrossRefGoogle Scholar
  36. 36.
    Tenhaeff WE, Perry KA, Dudney NJ (2012) Impedance characterization of Li ion transport at the interface between laminated ceramic and polymeric electrolytes. J Electrochem Soc 159(12):A2118–A2123.  https://doi.org/10.1149/2.063212jes CrossRefGoogle Scholar
  37. 37.
    Jossen A (2006) Fundamentals of battery dynamics. J Power Sources 154(2):530–538.  https://doi.org/10.1016/j.jpowsour.2005.10.041 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Building Materials ResearchRWTH Aachen UniversityAachenGermany

Personalised recommendations