Advertisement

Ionics

pp 1–9 | Cite as

Sodium dodecyl sulphate assisted hydrothermally synthesized hexagonal prismatic nanocrystalline zinc cobaltite for high performance supercapacitors

  • N. Varalakshmi
  • A. Lakshmi Narayana
  • D. Rekha
  • O. M. Hussain
  • N. Y. SreedharEmail author
Original Paper
  • 17 Downloads

Abstract

Hexagonal prismatic nanocrystalline ZnCo2O4 (HPNZCO) has been successfully synthesized via sodium dodecyl sulphate-assisted facile hydrothermal method. The crystallographic analysis revealed that the obtained compound is in pure ZnCo2O4 phase with Fd \( \overline{\ 3} \)m space group and the estimated crystallite size is 10 nm. The surface morphological features depict homogenously distributed hexagonal prism grains with an average grain size of less than 10 nm. TEM analysis revealed that the hexagonal morphology prisms are closely packed together as a group and facilitate large electrochemical active sites for the redox reactions and accelerate ion transport during the electrochemical process. The HPNZCO electrode delivered the highest specific capacitance (CS) of 1060 F g−1 at a current density of 1 A g−1 and retained 93% of capacitance even after 5000 cycles, suggesting its excellent cycling stability. The demonstrations infer that the HPNZCO electrode opens up new opportunities for next-generation high performance supercapacitors.

Keywords

Binary metal oxides Hexagonal prismatic nanocrystalline ZnCo2O4 (HPNZCO) Hydrothermal method Microstructure Electrochemical properties Supercapacitors 

Notes

Acknowledgments

One of the Author N.Varalakshmi gratefully acknowledge the university grants commission for providing BSR fellowship. Also,the tecchnical support provided by prof.M.V.Shankar,Department of materials science and nanotechnology ,yogivemana university ,kadapa is greatly acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Huang L, Chen D, Ding Y, Wang ZL, Zeng Z, Liu M (2013) Hybrid composite Ni (OH)2@NiCo2O4 grown on carbon fiber paper for high-performance super capacitors. ACS Appl Mater Interfaces 5:11159–11162CrossRefGoogle Scholar
  2. 2.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850CrossRefGoogle Scholar
  3. 3.
    Liu SL, Huang JY, Liu J, Lei M, Min J, Li S (2016) Porous Mo2N nanobelts as a new anode material for sodium-ion batteries. Mater Lett 172:56–59CrossRefGoogle Scholar
  4. 4.
    Lei M, Fu XL, Li PG, Tang WH (2011) Growth and photoluminescence of zinc blende ZnS nanowires via metal organic chemical vapor deposition. J Alloy Compd 509:5769–5772CrossRefGoogle Scholar
  5. 5.
    Huang JQ, Zhang B, Xie YY, Lye WWK, Xu ZL, Abouali S, Mohammad AG, Huang JQ, Zhang TY, HuangB KJK (2016) Electrospun graphitic carbon nanofibers with in-situ encapsulated Co-Ni nanoparticles as freestanding electrodes for LiO-2 batteries. Carbon 100:329–336CrossRefGoogle Scholar
  6. 6.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRefGoogle Scholar
  7. 7.
    Mohamed SG, Hung TF, Chen CJ, Chen CK, Liu FS (2014) Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire based architectures. RSC Adv 4:17230–17235CrossRefGoogle Scholar
  8. 8.
    Pandolfo AG, Hollemkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRefGoogle Scholar
  9. 9.
    Yang CM, Kim YJ, Endo M (2007) Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J Am Chem Soc 129:20–21CrossRefGoogle Scholar
  10. 10.
    Liu S, Sun S, You XZ (2014) Inorganic nanostructured materials for high performance electrochemical supercapacitors. Nanoscale 6:2037–2045CrossRefGoogle Scholar
  11. 11.
    Bao F, Wang X, Zhao X, Wang Y, Ji Y, Zhang H, Liu X (2014) Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv 4:2393–2397CrossRefGoogle Scholar
  12. 12.
    Zhou G, Zhu J, Chen Y, Mei L, Duan X, Zhang G, Chen L, Wang T, Lu B (2014) Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim Acta 123:450–455CrossRefGoogle Scholar
  13. 13.
    Xu Y, Wang X, An C, Wang Y, Jiao L, Yuan H (2014) Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J Mater Chem A2:16480–16488CrossRefGoogle Scholar
  14. 14.
    Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRefGoogle Scholar
  15. 15.
    Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10011–10017CrossRefGoogle Scholar
  16. 16.
    Cheng J, Lu Y, Qiu K, Yan H, Hou X, Xu J, Han L, Liu X, Kim JK, Luo Y (2015) Mesoporous ZnCo2O4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Phys Chem Chem Phys 17:17016–17022CrossRefGoogle Scholar
  17. 17.
    Cheng J, Yan H, Lu Y, Qiu K, Hou X, Xu J, Han L, Liu X, Kim JK, Luo Y (2015) Mesoporous CuCo2O4 nanograsses as multifunctional electrodes for supercapacitors and electro-catalysts. J Mater Chem A3:9769–9776CrossRefGoogle Scholar
  18. 18.
    Bai J, Wang K, Feng J, Xiong S (2015) ZnO/CoO and ZnCo2O4 hierarchical bipyramid nanoframes: morphology control, formation mechanism, and their lithium storage properties. ACS Appl Mater Interfaces 7:22848–22857CrossRefGoogle Scholar
  19. 19.
    Bai W, Tong H, Gao Z, Yue S, Xing S, Dong S, Shen L, He J, Zhang X, Liang Y (2015) Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotubes/nitrogen-doped graphene film and its electrochemical capacitance. J Mater Chem A 3:21891–21898CrossRefGoogle Scholar
  20. 20.
    Wang Q, Liu B, Wang X, Ran S, Wang L, Chen D, Shen G (2012) Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photo electrochemical cells. J Mater Chem 22:21647–21653CrossRefGoogle Scholar
  21. 21.
    Wu C, Cai J, Zhang Q, Zhou X, Zhu Y, Shen PK, Zhang K (2015) Hierarchical mesoporous zinc-nickel cobalt ternary oxide nanowire arrays on nickel foam as high-performance electrodes for supercapacitors. ACS Appl Mater Interfaces 7:26512–26521CrossRefGoogle Scholar
  22. 22.
    Chen H, Zhang Q, Han X, Cai J, Liu M, Yang Y, Zhang K (2015) Hierarchically porous zinc nickel cobalt oxide nanosheets grown on Ni foam as binder-free electrodes for electrochemical energy storage. J Mater Chem A 3:24022–24032CrossRefGoogle Scholar
  23. 23.
    Padmanathan N, Selladurai S (2014) Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. J Ionics 20:479–487CrossRefGoogle Scholar
  24. 24.
    Yu L, Guan BY, Xiao W, Lou XWD (2015) Formation of yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5:1500981CrossRefGoogle Scholar
  25. 25.
    Guan BY, Kushima A, Yu L, Li S, Li J, Lou XW (2017) Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv Mater 29:1605902CrossRefGoogle Scholar
  26. 26.
    Koo WT, Jang HY, Kim C, Jung JW, Cheong JY, Kim ID (2017) MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode. J Mater Chem A 5:22717–22725CrossRefGoogle Scholar
  27. 27.
    Wang S, Pu J, Tong Y, Gao Y, Wang Z (2014) ZnCo2O4 nanowire arrays grown on nickel foam for high performance psuedocapacitors. J Mater Chem A 2:5434–5440CrossRefGoogle Scholar
  28. 28.
    Che H, Liu A, Zhang X, Mu J, Bai Y, Hou J (2015) Three-dimensional hierarchical ZnCo2O4 flower-like microspheres assembled from porous nanosheets: hydrothermal synthesis and electrochemical properties. Ceram Int 41:7556–7564CrossRefGoogle Scholar
  29. 29.
    Li X, Zhang M, Wu L, Fu Q, Gao H (2019) Annealing temperature dependent ZnCo2O4 nanosheet arrays supported on Ni foam for high-performance asymmetric supercapacitor. J Alloys Compd 773:367–375CrossRefGoogle Scholar
  30. 30.
    Bao F, Wang X, Zhao X, Wang Y, Ji Y, Zhang H, Liu XY (2014) Controlled growth of mesoporous ZnCo2O4 nanosheets arrays on Ni foam as high-rate electrodes for super capacitors. RSC Adv 4:2393–2397CrossRefGoogle Scholar
  31. 31.
    Mohamed SG, Sayed YA, Nageh KA (2017) Calcinations-free synthesis of zinc cobaltite nanospheres for high-performance supercapacitors. Materials Today Energy 4:97–104CrossRefGoogle Scholar
  32. 32.
    Rajesh JA, Min BK, Kim JH, Kim H, Ahn KS (2016) Cubic spinel AB2O4 type porous ZnCo2O4 microspheres: facile hydrothermal synthesis and their electrochemical performances in pseudocapacitor. J Electrochem Soc 163:A2418–A2427CrossRefGoogle Scholar
  33. 33.
    Wang O, Du J, Zhu Y, Yang J, Chen J, Wang C, Li L, Jiao L (2015) Facile fabrication and super capacitive properties of mesoporous zinc cobaltite microspheres. J Power Sources 284:138–145CrossRefGoogle Scholar
  34. 34.
    Niu H, Yang X, Jiang H, Zhou D, Li X, Zhang T, Liu J, Wang Q, Qu F (2015) A hierarchical core-shell heterostructure of porous carbon nanofiber at ZnCo2O4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors. J Mater Chem 3:24082–24094CrossRefGoogle Scholar
  35. 35.
    Kulkarni R, Malladi R, Hanagadakar M, Doddamani M, Santhakumari B, Kulkarni S (2016) Ru–TiO2 semiconducting nanoparticles for the photo-catalytic degradation of bromothymol blue. J Mater Sci Mater Electron 27:13065–13074CrossRefGoogle Scholar
  36. 36.
    Mohamed SG, Hung TF, Chen CJ, Chen CK, Hu SF, Liu RS (2014) Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire based architectures. RSC Adv 4:17230–17235CrossRefGoogle Scholar
  37. 37.
    Wei X, Chen D, Tang W (2007) Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol-gel method. Mater Chem Phys 103:54–58CrossRefGoogle Scholar
  38. 38.
    Chang X, Zang L, Liu S, Wang M, Guo H, Wang C, Wang Y (2018) In situ construction of yolk-shell zinc cobaltite with uniform carbon doping for high performance asymmetric supercapacitors. J Mater Chem A 6:9109–9115CrossRefGoogle Scholar
  39. 39.
    Davis M, Gumeci C, Black B, Korzeniewski C, Hope-Weeks L (2012) Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology. RSC Adv 2:2061–2066CrossRefGoogle Scholar
  40. 40.
    Wu C, Cai J, Zhang Q, Zhou X, Zhu Y, Li LJ, Shen P, Zhang K (2015) Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim Acta 169:202–209CrossRefGoogle Scholar
  41. 41.
    Song X, Ru Q, Mo Y, Guo L, Hu S, An B (2014) A novel porous coral-like Zn0.5Ni0.5Co2O4 as an anode material for lithium ion batteries with excellent rate performance. J Power Sources 269:795–803CrossRefGoogle Scholar
  42. 42.
    Ko TH, Lei D, Balasubramaniam S, Seo MK, Chung YS, Kim HY, Kim BS (2017) Polypyrrole decorated hierarchical NiCo2O4 nanoneedle/carbon fiber papers for flexible high-performance supercapacitor applications. Electrochim Acta 247:524–534CrossRefGoogle Scholar
  43. 43.
    Nguyen T, Carmezim J, Fatima M (2017) NixCo1-x (OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid super capacitors. Energy 126:208–216CrossRefGoogle Scholar
  44. 44.
    Rajesh JA, Min BK, Kim JH, Kang SH, Kim H, Ahn KS (2017) Facile hydrothermal synthesis and electrochemical super capacitor performance of hierarchical coral-like ZnCo2O4 nanowires. Electro Anal Chem 785:48–57CrossRefGoogle Scholar
  45. 45.
    Tomboc GM, Jadahv HS, Kim H (2017) PVP assisted morphological-controlled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high performance pseudo capacitor. Chem Eng 308:202–213CrossRefGoogle Scholar
  46. 46.
    Zhao Y, Liu G, Liu L, Jiang Z (2009) High-performance thin-film Li4Ti5O12 electrodes fabricated by using ink-jet printing technique and their electrochemical properties. J Solid State Electrochem 13:705–711CrossRefGoogle Scholar
  47. 47.
    Wang Q, Zhu Y, Xue J, Zhao X, Guo Z, Wang C (2016) General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties. ACS Appl Mater Interfaces 8:17226–17232CrossRefGoogle Scholar
  48. 48.
    Krishnan SG, Reddy MV, Harilal M, Vidyadharan B, Misnon II, Rahim MHA, Ismail J, Jose R (2015) Characterization of MgCo2O4 as an electrode for high performance super capacitors. Electrochim Acta 161:312–321CrossRefGoogle Scholar
  49. 49.
    Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM (2011) Graphene–cellulose paper flexible super capacitors. Adv Energy Mater 1:917–922CrossRefGoogle Scholar
  50. 50.
    Karthikeyan K, Kalpana D, Renganathan NG (2009) Synthesis and characterization of ZnCo2O4 nonmaterial for symmetric super capacitor applications. Ionics 15:107–110CrossRefGoogle Scholar
  51. 51.
    Zhang P, Guan BY, Yu L, Lou XWD (2017) Formation of double-shelled zinc–cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. AngewChem IntEd 56:7141–7145Google Scholar
  52. 52.
    Wu H, Lou Z, Yang H, Shen G (2015) A flexible spiral-type super capacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 7:1921–1926CrossRefGoogle Scholar
  53. 53.
    Wu C, Cai J, Zhang Q, Zhou X, Zhu Y, Li L, Shen P, Zhang K (2015) Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for super capacitors. Electrochim Acta 169:202–209CrossRefGoogle Scholar
  54. 54.
    Omar FS, Numan A, Duraisamy N, Bashir S, Ramesh K, Ramesh S (2017) A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J Alloys and Compd 716:96–105CrossRefGoogle Scholar
  55. 55.
    Liu L, Zhang H, Mu Y, Yang J, Wang Y (2016) Porous iron cobaltate nanoneedles array on nickel foam as anode materials for lithium-ion batteries with enhanced electrochemical performance. ACS Appl Mater Interfaces 8:1351–1359CrossRefGoogle Scholar
  56. 56.
    Qu BH, Hu LL, Li QH, Wang YG, Chen LB, Wang TH (2014) High performance lithium ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interfaces 6:731–736CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. Varalakshmi
    • 1
  • A. Lakshmi Narayana
    • 2
  • D. Rekha
    • 1
  • O. M. Hussain
    • 2
  • N. Y. Sreedhar
    • 1
    Email author
  1. 1.Electroanalytical Laboratory, Department of ChemistrySri Venkateswara UniversityTirupatiIndia
  2. 2.Thin Films Laboratory, Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations