pp 1–11 | Cite as

Hierarchical Mn-Co sulfide nanosheets on nickel foam by electrochemical co-deposition for high-performance pseudocapacitors

  • Gang Li
  • Zhuoqing Chang
  • Tingyu Li
  • Lili Ma
  • Kaiying WangEmail author
Original Paper


In this work, we report an electrochemical co-deposition of binary metallic manganese-cobalt sulfides with tailored molar ratio of Mn and Co ions on Ni-foam substrates, which show 3-dimensinal (3D) hierarchical porous structure. Benefiting from synergistic effect and dual energy storage mechanism of manganese sulfide and cobalt sulfide, the optimal hierarchical Mn-Co sulfide nanosheet electrode exhibits areal capacitance ~ 1.724 F cm−2 at current density 1 mA cm−2 and excellent capacitance stability (65.15% capacitance retention at the current density of 5 mA cm−2 after 5000 cycles). The superior electrochemical performance might be attributed to highly conductive, 3D mesoporous framework of Ni foam, resulting in fast electron and ion transport from the electroactive materials to current collector as well as large amount of active sites. Furthermore, an asymmetric supercapacitor is also assembled, delivering an energy density of 27.6 Wh kg−1 at a power density of 645.2 W kg−1. The excellent electrochemical performance of the binder-free Mn-Co sulfide electrodes renders them as a promising electrode material for supercapacitors.

Graphical abstract


Electrochemical co-deposition Mn-Co sulfide nanosheet arrays Supercapacitor 


Funding information

This research was supported by the National Natural Science Foundation of China (61674113, 51622507, and 61471255), Natural Science Foundation of Shanxi Province, China (2016011040), and Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi Province, China (2016138).

Supplementary material

11581_2019_2946_MOESM1_ESM.doc (861 kb)
ESM 1 (DOC 861 kb)


  1. 1.
    Zhang S, Zhu J, Qing Y, Wang L, Zhao J, Li J, Tian W, Jia D, Fan Z (2018) Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv Funct Mater 28:1805898CrossRefGoogle Scholar
  2. 2.
    Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729–762CrossRefGoogle Scholar
  3. 3.
    Yu Z, Cheng Z, Tai Z, Wang X, Subramaniyam CM, Fang C, Al-Rubaye S, Wang X, Dou S (2016) Tuning the morphology of Co3O4 on Ni foam for supercapacitor application. RSC Adv 6:45783–45790CrossRefGoogle Scholar
  4. 4.
    Guan C, Liu X, Ren W, Li X, Cheng C, Wang J (2017) Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater 7:1602391CrossRefGoogle Scholar
  5. 5.
    Xu J, Sun Y, Lu M, Wang L, Zhang J, Qian J, Liu X (2018) Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem Eng J 334:1466–1476CrossRefGoogle Scholar
  6. 6.
    Yan M, Yao Y, Wen J, Long L, Kong M, Zhang G, Liao X, Yin G, Huang Z (2016) Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl Mater Interfaces 8:24525–24535CrossRefGoogle Scholar
  7. 7.
    Hou X, Zhang Y, Dong Q, Hong Y, Liu Y, Wang W, Shao J, Si W, Dong X (2018) Metal organic framework derived core–shell structured Co9S8@N–C@MoS2 nanocubes for supercapacitor. ACS Appl Energy Mater 1:3513–3520CrossRefGoogle Scholar
  8. 8.
    Nagaraju C, V. V. Muralee Gopi C, Ahn J-W, Kim H-J (2018) Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high-performance supercapacitor applications. New J Chem 42:12357–12360CrossRefGoogle Scholar
  9. 9.
    Chen JS, Guan C, Gui Y, Blackwood DJ (2017) Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl Mater Interfaces 9:496–504CrossRefGoogle Scholar
  10. 10.
    Patil AM, Lokhande AC, Shinde PA, Lokhande CD (2018) Flexible asymmetric solid-state supercapacitors by highly efficient 3D nanostructured alpha-MnO2 and h-CuS electrodes. ACS Appl Mater Interfaces 10:16636–16649CrossRefGoogle Scholar
  11. 11.
    Rahimi S, Shahrokhian S, Hosseini H (2018) Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays-nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors. J Electroanal Chem 810:78–85CrossRefGoogle Scholar
  12. 12.
    Zhu X, Liu D, Zheng D, Wang G, Huang X, Harris J, Qu D, Qu D (2018) Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. J Mater Chem A 6:13294–13301CrossRefGoogle Scholar
  13. 13.
    Meng X, Deng J, Zhu J, Bi H, Kan E, Wang X (2016) Cobalt sulfide/graphene composite hydrogel as electrode for high-performance Pseudocapacitors. Sci Rep 6:21717CrossRefGoogle Scholar
  14. 14.
    Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883CrossRefGoogle Scholar
  15. 15.
    Wang W, Yang L, Qu F, Liu Z, Du G, Asiri AM, Yao Y, Chen L, Sun X (2017) A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. J Mater Chem A 5:16585–16589CrossRefGoogle Scholar
  16. 16.
    Zhang M, Zai J, Liu J, Chen M, Wang Z, Li G, Qian X, Qian L, Yu X (2017) A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalton Trans 46:9511–9516CrossRefGoogle Scholar
  17. 17.
    Wie C, Sun Y, Zhan N, Liu M, Zhao L, Cheng C, Zhang D (2017) Preparation of hierarchical MnCo2S4 nanotubes for high-performance supercapacitors and non-enzymatic glucose sensors. ChemistrySelect 2:11154–11159CrossRefGoogle Scholar
  18. 18.
    Elshahawy AM, Li X, Zhang H, Hu Y, Ho KH, Guan C, Wang J (2017) Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J Mater Chem A 5:7494–7506CrossRefGoogle Scholar
  19. 19.
    Chen T, Tang Y, Qiao Y, Liu Z, Guo W, Song J, Mu S, Yu S, Zhao Y, Gao F (2016) All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci Rep 6:23289CrossRefGoogle Scholar
  20. 20.
    Wang Q, Jiao L, Du H, Si Y, Wang Y, Yuan H (2012) Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. J Mater Chem 22:21387CrossRefGoogle Scholar
  21. 21.
    Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5:605–617CrossRefGoogle Scholar
  22. 22.
    Yu K, Tang WM, Dai J (2018) Double-layer MnCo2S4@Ni-co-S core/shell nanostructure on nickel foam for high-performance supercapacitor. Phys Status Solidi A 215:1800147Google Scholar
  23. 23.
    Sahoo S, Naik KK, Rout CS (2015) Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications. Nanotechnology 26:455401CrossRefGoogle Scholar
  24. 24.
    Sahoo S, Rout CS (2016) Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochim Acta 220:57–66CrossRefGoogle Scholar
  25. 25.
    Yu W, Jiang X, Ding S, Li BQ (2014) Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors. J Power Sources 256:440–448CrossRefGoogle Scholar
  26. 26.
    Yu L, Zhang L, Wu HB, Lou XW (2014) Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem Int Ed Eng 53:3711–3714CrossRefGoogle Scholar
  27. 27.
    Nguyen VH, Lamiel C, Shim J-J (2016) 3D hierarchical mesoporous NiCo2S4@Ni(OH)2 core–shell nanosheet arrays for high performance supercapacitors. New J Chem 40:4810–4817CrossRefGoogle Scholar
  28. 28.
    Sahoo S, Mondal R, Late DJ, Rout CS (2017) Electrodeposited nickel cobalt manganese based mixed sulfide nanosheets for high performance supercapacitor application. Microporous Mesoporous Mater 244:101–108CrossRefGoogle Scholar
  29. 29.
    Sami SK, Siddiqui S, Feroze MT, Chung C-H (2017) Electrodeposited nickel–cobalt sulfide nanosheet on polyacrylonitrile nanofibers: a binder-free electrode for flexible supercapacitors. Mater Res Express 4:116309CrossRefGoogle Scholar
  30. 30.
    Kannan PK, Hu C, Morgan H, Rout CS (2016) One-step electrodeposition of NiCo2S4 nanosheets on patterned platinum electrodes for non-enzymatic glucose sensing. Chem Asian J 11:1837–1841CrossRefGoogle Scholar
  31. 31.
    Mohammadi A, Arsalani N, Tabrizi AG, Moosavifard SE, Naqshbandi Z, Ghadimi LS (2018) Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem Eng J 334:66–80CrossRefGoogle Scholar
  32. 32.
    Yuan C, Gao B, Su L, Chen L, Zhang X (2009) Electrochemically induced phase transformation and charge-storage mechanism of amorphous CoSx nanoparticles prepared by interface-hydrothermal method. J Electrochem Soc 156:A199CrossRefGoogle Scholar
  33. 33.
    Mao X, Wang Z, Kong W, Wang W (2017) Nickel foam supported hierarchical Co9S8 nanostructures for asymmetric supercapacitors. New J Chem 41:1142–1148CrossRefGoogle Scholar
  34. 34.
    Cheng J, Lu Y, Qiu K, Yan H, Xu J, Han L, Liu X, Luo J, Kim J-K, Luo Y (2015) Hierarchical core/shell NiCo2O4@NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and Li-ion batteries. Sci Rep 5:12099CrossRefGoogle Scholar
  35. 35.
    Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high performance supercapacitor materials. ACS Appl Mater Interfaces 5:8790–8795CrossRefGoogle Scholar
  36. 36.
    Lv L, Xu K, Wang C, Wan H, Ruan Y, Liu J, Zou R, Miao L, Ostrikov K, Lan Y, Jiang J (2016) Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance. Electrochim Acta 216:35–43CrossRefGoogle Scholar
  37. 37.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin. Science 343:1210–1211CrossRefGoogle Scholar
  38. 38.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Mater Sci 343:1210–1211Google Scholar
  39. 39.
    Wan H, Jiang J, Yu J, Xu K, Miao L, Zhang L, Chen H, Ruan Y (2013) NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15:7649CrossRefGoogle Scholar
  40. 40.
    Lv L, Li Z, Xue K-H, Ruan Y, Ao X, Wan H, Miao X, Zhang B, Jiang J, Wang C, Ostrikov K (2018) Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy 47:275–284CrossRefGoogle Scholar
  41. 41.
    Lv L, Zha D, Ruan Y, Li Z, Ao X, Zheng J, Jiang J, Chen HM, Chiang WH, Chen J, Wang C (2018) A universal method to engineer metal oxide-metal-carbon interface for highly efficient oxygen reduction. ACS Nano 12:3042–3051CrossRefGoogle Scholar
  42. 42.
    Vijayakumar S, Nagamuthu S, Ryu KS (2018) In situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors. Dalton Trans 47:6722–6728CrossRefGoogle Scholar
  43. 43.
    Gao W, Chen D, Quan H, Zou R, Wang W, Luo X, Guo AL (2017) Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain Chem Eng 5:4144–4153CrossRefGoogle Scholar
  44. 44.
    Subramani K, Sudhan N, Divya R, Sathish M (2017) All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv 7:6648–6659CrossRefGoogle Scholar
  45. 45.
    Rajesh JA, Min B-K, Kim J-H, Kim H, Ahn K-S (2016) Cubic spinel AB2O4 type porous ZnCo2O4 microspheres: facile hydrothermal synthesis and their electrochemical performances in pseudocapacitor. J Electrochem Soc 163:A2418–A2427CrossRefGoogle Scholar
  46. 46.
    Liu Y, Jiang G, Sun S, Xu B, Zhou J, Zhang Y, Yao J (2018) Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors. J Alloys Compd 731:560–568CrossRefGoogle Scholar
  47. 47.
    Chen H, Hsieh C-K, Yang Y, Liu XY, Lin C-H, Tsai C-H, Wen ZQ, Dong F, Zhang YX (2017) Hierarchical nickel cobaltate/manganese dioxide core-shell nanowire arrays on graphene-decorated nickel foam for high-performance supercapacitors. ChemElectroChem 4:2414–2422CrossRefGoogle Scholar
  48. 48.
    Lin L, Tang S, Zhao S, Peng X, Hu N (2017) Hierarchical three-dimensional FeCo2O4@MnO2 core-shell nanosheet arrays on nickel foam for high-performance supercapacitor. Electrochim Acta 228:175–182CrossRefGoogle Scholar
  49. 49.
    Zheng Y, Xu J, Yang X, Zhang Y, Shang Y, Hu X (2018) Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem Eng J 333:111–121CrossRefGoogle Scholar
  50. 50.
    Zheng Y, Wang X, Zhao W, Cao X, Liu J (2018) Phytic acid-assisted synthesis of ultrafine NiCo2S4 nanoparticles immobilized on reduced graphene oxide as high-performance electrode for hybrid supercapacitors. Chem Eng J 333:603–612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gang Li
    • 1
  • Zhuoqing Chang
    • 1
  • Tingyu Li
    • 1
  • Lili Ma
    • 1
  • Kaiying Wang
    • 1
    • 2
    Email author
  1. 1.MicroNano System Research CenterTaiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Microsystems-IMSUniversity of South-Eastern NorwayHortenNorway

Personalised recommendations