pp 1–8 | Cite as

Hierarchical β-Co(OH)2/CoO nanosheets: an additive-free synthesis approach for supercapattery applications

  • I. Manohara Babu
  • J. Johnson William
  • G. MuralidharanEmail author
Short Communication


Cobalt hydroxide nanosheets have been synthesized via facile and affordable simple chemistry route without any additives for structure design. Co(OH)2 nanosheets exhibit a maximum specific capacity of 111 C g−1 at a current density of 0.5 A g−1. Asymmetric supercapacitor (Co(OH)2//AC) has been fabricated and it delivers the specific capacitance of 34 F g−1 with the power density of 300 W kg−1 at a current density of 1 A g−1. These profitable features of cobalt hydroxide nanosheets prepared in the present work are quite promising electrode material for high-performance supercapatteries.


Cobalt hydroxide Nanosheet Additive Supercapattery 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_2944_MOESM1_ESM.doc (2.8 mb)
ESM 1 (DOC 2863 kb)


  1. 1.
    Du L, Du W, Ren H, Wang N, Yao Z, Shi X, Zhang B, Zai J, Qian X (2018) Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J Mater Chem A 43:22527–22535Google Scholar
  2. 2.
    Liu Z, Wang J, Ding H, Chen S, Yu X, Lu B (2018) Carbon nanoscrolls for aluminum battery. ACS Nano 12:8456–8466CrossRefGoogle Scholar
  3. 3.
    Chen S, Wang J, Fan L, Ma R, Zhang E, Liu Q, Lu B (2018) An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv Energy Mat 8:1800140CrossRefGoogle Scholar
  4. 4.
    Wang J, Zhang G, Liu Z, Li H, Liu Y, Wang Z, Li X, Shih K, Mai L (2018) Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 44:272–278CrossRefGoogle Scholar
  5. 5.
    Wang L, Zhang Q, Zhu J, Duan X, Xu Z, Liu Y, Yang H, Lu B (2019) Nature of extra capacity in MoS2 electrodes: molybdenum atoms accommodate with lithium. Energy Storage Mater 16:37–45CrossRefGoogle Scholar
  6. 6.
    Fan L, Chen S, Ma R, Wang J, Wang L, Zhang Q, Zhang E, Liu Z, Lu B (2018) Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 14:1801806CrossRefGoogle Scholar
  7. 7.
    Liu Y, Jiang X, Li B, Zhang X, Liu T, Yan X, Ding J, Cai Q, Zhang J (2014) Halloysite nanotubes @ reduced graphene oxide composite for removal of dyes from water and supercapacitors. J Mater Chem A 2:4264–4269CrossRefGoogle Scholar
  8. 8.
    Wang Y, Liu Y, Zhang J (2015) Colloidal electrostatic self-assembly synthesis of SnO2/graphene nanocomposite for supercapacitors. J Nanopart Res 17:420CrossRefGoogle Scholar
  9. 9.
    Liu T, Zhang X, Li B, Ding J, Liu Y, Li G, Meng M, Cai Q, Zhang J (2014) Fabrication of quasi-cubic Fe3O4 @ rGO composite via a colloid electrostatic self-assembly process for supercapacitors. RSC Adv 4:50765–50770CrossRefGoogle Scholar
  10. 10.
    Huang J, Wei J, Xu Y, Xiao Y, Chen Y (2017) A pinecone-inspired hierarchical vertically-aligned nanosheet arrays electrode for high-performance asymmetric supercapacitors. J Mater Chem A 5:23349–23360CrossRefGoogle Scholar
  11. 11.
    Liu T, Jiang C, Cheng B, You W, Yu J (2017) Novel hierarchical NiS/N-doped carbon composite hollow spheres as an enhanced-performance electrode for hybrid supercapacitors. J Mater Chem A 5:21257–21265CrossRefGoogle Scholar
  12. 12.
    Xue T, Wang X, Lee JM (2010) Dual-template synthesis of Co (OH)2 with mesoporous nanowire structure and its application in supercapacitor. J Power Sources 201:382–386CrossRefGoogle Scholar
  13. 13.
    Niu X, Zhu G, Yin Z, Dai Z, Hou X, Shao J, Huang W, Zhang Y, Dong X (2017) Fiber-based all-solid-state asymmetric supercapacitor based on Co3O4 @ MnO2 core/shell nanowire array. J Mater Chem A 5:22939–22944CrossRefGoogle Scholar
  14. 14.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 411:797–828CrossRefGoogle Scholar
  15. 15.
    Ma H, He J, Xiong DB, Wu J, Li Q, Dravid V, Zhao Y (2016) Nickel cobalt hydroxides @ reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability. ACS Appl Mater Interfaces 8:1992–2000CrossRefGoogle Scholar
  16. 16.
    Wang Z, Liu Y, Gao C, Jiang H, Zhang J (2014) A porous Co (OH)2 material derived from MOF template and its superior energy storage performances for supercapacitors. J Mater Chem A 2:4264–4269CrossRefGoogle Scholar
  17. 17.
    Noce RD, Eugenio S, Silva TM, Carmezim MJ, Montemor MF (2015) α-Co (OH)2/carbon nanofoam composite as electrochemical capacitor electrode operating at 2 V in aqueous medium. J Power Sources 288:234–242CrossRefGoogle Scholar
  18. 18.
    Pan X, Ji F, Kuang L, Liu F, Zhang Y, Chen X (2016) Synergetic effect of three-dimensional Co3O4 @ Co (OH)2 hybrid nanostructure for electrochemical energy storage. Electrochim Acta 215:298–304CrossRefGoogle Scholar
  19. 19.
    Liu L, Cheng JP, Zhang J, Liu F, Zhang XB (2014) Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of α-Co (OH)2. J Alloys Compds 615:868–874CrossRefGoogle Scholar
  20. 20.
    Wang Z, Gao C, Liu Y, Li D, Chen W, Ma Y, Wang C, Zhang J (2017) Electrochemical performance and transformation of Co-MOF/reduced graphene oxide composite. Mat Lett 193:216–219CrossRefGoogle Scholar
  21. 21.
    Zhou F, Liu Q, Gu J, Zhang W, Zhang D (2015) Microwave-assisted anchoring of flower like Co (OH)2 nanosheets on activated carbon to prepare hybrid electrodes for high-rate electrochemical capacitors. Electrochim Acta 170:328–336CrossRefGoogle Scholar
  22. 22.
    Xu ZZ, Chen ZL, Ben Y, Shen JM (2009) Synthesis of hexagonal β-Co (OH)2 nano-platelets with high catalytic activity via a low-temperature precipitation method. Mat Lett 63:1210–1212CrossRefGoogle Scholar
  23. 23.
    Wu T, Yuan CZ (2012) Facile one-pot strategy synthesis of ultrathin α-Co (OH)2 nanosheets towards high-performance electrochemical capacitors. Mat Lett 85:161–163CrossRefGoogle Scholar
  24. 24.
    Kim ND, Yun HJ, Song IK, Yi J (2011) Preparation and characterization of nanostructured Mn oxide by an ethanol-based precipitation method for pseudocapacitor applications. Scr Mater 65:448–451CrossRefGoogle Scholar
  25. 25.
    William JJ, Babu IM, Muralidharan G (2019) Microwave assisted fabrication of L-arginine capped α-Ni (OH)2 microstructures as an electrode material for high performance hybrid supercapacitors. Mat Chem Phys 224:357–368CrossRefGoogle Scholar
  26. 26.
    Purushothaman KK, Babu IM, Sethuraman B, Muralidharan G (2013) Nanosheet-assembled NiO microstructures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10767–10773CrossRefGoogle Scholar
  27. 27.
    Yang J, Liu H, Martens WN, Frost RL (2010) Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 114:111–119CrossRefGoogle Scholar
  28. 28.
    Aboelazm EAA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater 3:67Google Scholar
  29. 29.
    Han LN, Lv LB, Zhu QC, Wei X, Li XH, Chen S (2016) Ultra-durable two-electrode Zn-air secondary batteries based on bifunctional titania nanocatalysts: Co2+ dopant boosts the electrochemical activity. J Mater Chem A 4:7841–7847CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • I. Manohara Babu
    • 1
  • J. Johnson William
    • 1
  • G. Muralidharan
    • 1
    Email author
  1. 1.Department of PhysicsThe Gandhigram Rural Institute—Deemed to be UniversityGandhigramIndia

Personalised recommendations