pp 1–9 | Cite as

Facile synthesis of nanowire and rectangular flakes of Co3O4 onto Ni foam for high-performance asymmetric supercapacitors

  • Xin Wang
  • Kun Song
  • Rui Yang
  • Jishen Li
  • Xiaoyan Jing
  • Jun WangEmail author
Original Paper


In this study, Co3O4 with different morphologies (nanowires of single phase, nanowires, and rectangular flakes of both phases) for supercapacitor electrode were synthesized through a hydrothermal approach in the presence of Triton X-100 followed by annealing at 350 °C for 1 h. The different morphologies of the samples were obtained with the assistance of surfactant by adjusting the quantity of reactants. Relative to Co3O4 nanowire (Co3O4 NW) samples, the Co3O4 nanowire-flake (Co3O4 NW-F) samples exhibit excellent electrochemical performance with higher capacity of 1230.65 F g−1 at a current density of 1 A g−1, and with regard to cycling stability, they perform well in a three-electrode system during the larger specific surface area. Moreover, an asymmetric supercapacitor was assembled with Co3O4 NW-F as positive electrode and activated carbon as negative electrode; the device shows a high energy density of 61.60 W h kg−1 at a power density of 1440 W kg−1.


Asymmetric supercapacitor Co3O4 Surfactant assisted 


Funding information

This work was supported by Department of Education, Heilongjiang Province (135109203) and College students’ innovation and training program (201810232090).

Supplementary material

11581_2019_2943_MOESM1_ESM.doc (260 kb)
ESM 1 (DOC 260 kb)
11581_2019_2943_MOESM2_ESM.mp4 (10.9 mb)
ESM 2 (MP4 11,132 kb)


  1. 1.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefGoogle Scholar
  2. 2.
    Ding X, Zhu J, Hu G, Zhang S (2018) Core–shell structured CoNi2S4@polydopamine nanocomposites as advanced electrode materials for supercapacitors. Ionics 25:897–901. CrossRefGoogle Scholar
  3. 3.
    Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H (2016) Phosphate ion functionalized Co3O4 ultrathin Nanosheets with greatly improved surface reactivity for high performance Pseudocapacitors. Adv Mater 29:1604167–1604175CrossRefGoogle Scholar
  4. 4.
    Hu H, Guan BY, Xia BY, Lou XW (2015) Designed formation of Co3O4/NiCo2O4 double-shelled Nanocages with enhanced Pseudocapacitive and Electrocatalytic properties. J Am Chem Soc 137:5590–5595CrossRefGoogle Scholar
  5. 5.
    Güra TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:2696–2767CrossRefGoogle Scholar
  6. 6.
    Yuan CZ, Yang L, Hou LR, Shen LF, Zhang XG, Lou XW (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887CrossRefGoogle Scholar
  7. 7.
    Wang X, Jia L, Liu Q, Liu J, Guo X, Jing X, Wang J (2016) Synthesis of 3D flower-like Co3O4/Polypyrrole nanosheet networks electrode for high performance supercapacitors. Colloids Surf A Physicochem Eng Asp 506:646–653CrossRefGoogle Scholar
  8. 8.
    Zhu J, Zhang S, Wang D (2017) Facile fabrication of coal-derived activated carbon/Co3O4 nanocomposites with superior electrochemical performance. Ionics 23:1927–1931CrossRefGoogle Scholar
  9. 9.
    Xing L, Dong Y, Hu F, Wu X, Umar A (2018) Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans 47:5687–5694CrossRefGoogle Scholar
  10. 10.
    Zhang X, Zhao Y, Xu C (2014) Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale 6:3638–3646CrossRefGoogle Scholar
  11. 11.
    Feng C, Zhang J, He Y, Zhong C, Hu W, Liu L, Deng Y (2015) Sub-3 nm Co3O4 Nanofilms with enhanced supercapacitor properties. ACS Nano 9:1730–1739CrossRefGoogle Scholar
  12. 12.
    Pan X, Ji F, Xia Q, Chen X, Pan H, Khisro SN, Luo S, Chen M, Zhang Y (2018) High-performance supercapacitors based on superior Co3O4 nanorods electrode for integrated energy harvesting-storage system. Electrochim Acta 282:905–912CrossRefGoogle Scholar
  13. 13.
    Xiao Z, Fan L, Xu B, Zhang S, Kang W, Kang Z, Lin H, Liu X, Zhang S, Sun D (2017) Green fabrication of ultrathin Co3O4 Nanosheets from metal-organic framework for robust high-rate supercapacitors. ACS Appl Mater Interfaces 9:41827–41836CrossRefGoogle Scholar
  14. 14.
    Hong W, Wang JQ, Gong PW, Sun JF, Niu LY, Yang ZG, Wang ZF, Yang SR (2014) High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. J Power Sources 270:516–525CrossRefGoogle Scholar
  15. 15.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  16. 16.
    Xi JB, Zhang Y, Wang N, Wang L, Zhang ZY, Xiao F, Wang S (2015) Ultrafine Pd nanoparticles encapsulated in microporous Co3O4 hollow Nanospheres for in situ molecular detection of living cells. ACS Appl Mater Interfaces 7:5583–5590CrossRefGoogle Scholar
  17. 17.
    Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB, Béguin F (2007) The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater 17:1828–1836CrossRefGoogle Scholar
  18. 18.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950CrossRefGoogle Scholar
  19. 19.
    Wang X, Zuo C, Jia L, Liu Q, Guo X, Jing X, Wang J (2017) Synthesis of sandwich-like vanadium pentoxide/carbon nanotubes composites for high performance supercapacitor electrodes. J Alloys Compd 708:134–140CrossRefGoogle Scholar
  20. 20.
    Yang B, Yu L, Yan H, Sun Y, Liu Q, Liu J, Song D, Hu S, Yuan Y, Liu L, Wang J (2015) Fabrication of urchin-like NiCo2(CO3)1.5(OH)3@NiCo2S4 on Ni foam by an ion-exchange route and application to asymmetrical supercapacitors. J Mater Chem A 3:13308–13316CrossRefGoogle Scholar
  21. 21.
    Yang Z, Du G, Guo Z, Yu X, Chen Z, Guo T, Sharma N, Liu H (2011) TiO2(B)@anatase hybrid nanowires with highly reversible electrochemical performance. Electrochem Commun 13:46–49CrossRefGoogle Scholar
  22. 22.
    Liu L, Chen T, Rong H, Wang Z (2018) NiCo2S4 nanosheets network supported on Ni foam as an electrode for hybrid supercapacitors. J Alloys Comp 766:149–156CrossRefGoogle Scholar
  23. 23.
    Chen X, Liu X, Liu Y, Zhu Y, Zhuang G, Zheng W, Cai Z, Yang P (2018) Advanced binder-free electrodes based on CoMn2O4@Co3O4 core/shell nanostructures for high-performance supercapacitors. RSC Adv 8:31594–31602CrossRefGoogle Scholar
  24. 24.
    Wen Y, Peng S, Wang Z, Hao J, Qin T, Lu S, Zhang J, He D, Fan X, Cao G (2017) Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. J Mater Chem A 5:7144–7152CrossRefGoogle Scholar
  25. 25.
    Tan Y, Liu Y, Kong L, Kang L, Ran F (2017) Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method. J Power Sources 363:1–8CrossRefGoogle Scholar
  26. 26.
    Wang J, Chang J, Wang L, Hao J (2018) One-step and low-temperature synthesis of CoMoO4 nanowire arrays on Ni foam for asymmetric supercapacitors. Ionics 24:3967–3974CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xin Wang
    • 1
    • 2
  • Kun Song
    • 1
    • 2
  • Rui Yang
    • 1
    • 2
  • Jishen Li
    • 2
  • Xiaoyan Jing
    • 1
  • Jun Wang
    • 1
    Email author
  1. 1.College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringQiqihar UniversityQiqiharPeople’s Republic of China

Personalised recommendations