Advertisement

Ionics

pp 1–12 | Cite as

Impedance analysis of thin YSZ electrolyte for low-temperature solid oxide fuel cells

  • Gianfranco DiGiuseppeEmail author
  • David Thompson
  • Cenk Gumeci
  • A. Mohammed Hussain
  • Nilesh Dale
Original Paper
  • 58 Downloads

Abstract

Solid oxide fuel cells based on yttria-stabilized zirconia materials have demonstrated a higher level of technology maturity compared to newer materials actively researched to lower the operating temperature. Yttria-stabilized zirconia-based cells can operate around 600 °C and achieve competitive power densities provided the electrolyte can be fabricated relatively thin. In this work, a 2.5-μm thick yttria-stabilized zirconia electrolyte, commercially available, anode-supported solid oxide fuel cell is systematically investigated under various electrochemical conditions, and area of improvements with the electrochemical performance are identified. The cell consists of a Ni-YSZ bulk and functional layer anode, YSZ electrolyte, GDC barrier layer, and LSCF cathode. Using humidified hydrogen, the peak power densities are determined to be 0.31, 0.58, 0.96, 1.41, and 1.78 W/cm2 at 600, 650, 700, 750, and 800 °C, respectively. It is found that the ceria barrier layer is porous; thus, it is not effective to avoid the formation of strontium zirconate. It is therefore expected that the performance can be improved further if a denser ceria barrier layer can be deposited. In addition, energy dispersive spectroscopy analysis revealed significant Ce/Zr interdiffusion between the barrier layer and the electrolyte.

Keywords

Low temperature SOFC Thin YSZ LSCF cathode GDC barrier layer 

Notes

Acknowledgements

This work was conducted at Nissan’s facilities in Farmington Hills, MI during a sabbatical leave from Kettering University by the corresponding author.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Minh N (2004) Solid oxide fuel cell technology—features and applications. Solid State Ionics 174:271–277CrossRefGoogle Scholar
  2. 2.
    Singhal S (2002) Solid oxide fuel cells for stationary, mobile and military applications. Solid State Ionics 152:405–410CrossRefGoogle Scholar
  3. 3.
    Lawlor V, Reissig M, Makinson J, Rechberger J (2017) SOFC system for battery electric vehicle range extension: results of the first half of the Mestrex project. ECS Trans 78(1):191–195CrossRefGoogle Scholar
  4. 4.
    Kendall K, Liang B, Kendall M (2017) Microtubular SOFC (mSOFC) system in mobile robot applications. ECS Trans 78(1):237–242CrossRefGoogle Scholar
  5. 5.
    Gao Z, Mogni L, Miller E, Railsback J, Barnett S (2016) A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 9:1602–1644CrossRefGoogle Scholar
  6. 6.
    Wachsman E, Ball G, Jiang N, Stevenson D (1992) Structural and defect studies in solid oxide electrolytes. Solid State Ionics 52(1–3):213–218CrossRefGoogle Scholar
  7. 7.
    Choi S, Yoo S, Kim J, Park S, Jun A, Sengodan S, Kim J, Shin J, Jeong HY, Choi Y, Kim G, Liu M (2013) Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ. Sci Rep 3:2426–2432CrossRefGoogle Scholar
  8. 8.
    Tucker M (2010) Progress in metal-supported solid oxide fuel cells: a review. J Power Sources 195:4570–4582CrossRefGoogle Scholar
  9. 9.
    Chatzimichail R, Dawson R, Green S, Sullivan D, Mukerjee S, Selby M (2017) Engineering FEA sintering model development for metal supported SOFC. ECS Trans 78(1):2773–2783CrossRefGoogle Scholar
  10. 10.
    Strandbakke R, Cherepanov V, Zuev A, Tsvetkov D, Argirusis C, Sourkouni G, Prünte S, Norby T (2015) Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics 278:120–132CrossRefGoogle Scholar
  11. 11.
    Duan C, Kee R, Zhu H, Karakaya C, Chen Y, Ricote S, Jarry A, Crumlin E, Hook D, Braun R, Sullivan N, O’Hayre R (2018) Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557:217–222CrossRefGoogle Scholar
  12. 12.
    Minh N, Mizusaki J, Singhal S (2017) Advances in solid oxide fuel cells: review of progress through three decades of the international symposia on solid oxide fuel cells. ECS Trans 78(1):63–73CrossRefGoogle Scholar
  13. 13.
    Fabbri E, Bi L, Pergolesi D, Traversa E (2012) Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton-conducting electrolytes. Adv Mater 24:195–208CrossRefGoogle Scholar
  14. 14.
    Albrecht KJ, Braun RJ (2016) The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: channel-level model development and steady-state comparison. J Power Sources 304:384–401CrossRefGoogle Scholar
  15. 15.
    Boukamp B (1995) A linear Kronig-Kramers transform test for immittance data validation. J Electrochem Soc 142:1885–1894CrossRefGoogle Scholar
  16. 16.
    Schönleber M, Klotz D, Ivers-Tiffée E (2014) A method for improving the robustness of linear Kramers-Kronig validity tests. Electrochim Acta 131:20–27CrossRefGoogle Scholar
  17. 17.
    Schönleber M, Ivers-Tiffée E (2015) Approximability of impedance spectra by RC elements and implications for impedance analysis. Electrochem Commun 58:15–19CrossRefGoogle Scholar
  18. 18.
    Chen Y, Choi Y, Yoo S, Ding Y, Yan R, Pei K, Qu C, Zhang L, Chang I, Zhao B, Zhang Y, Chen H, Chen Y, Yang C, deGlee B, Murphy R, Liu J, Liu M (2018) A highly efficient multi-phase catalyst dramatically enhances the rate of oxygen reduction. Joule 2:1–12CrossRefGoogle Scholar
  19. 19.
    Boukamp B (2015) Fourier transform distribution function of relaxation times; application and limitations. Electrochim Acta 154:35–46CrossRefGoogle Scholar
  20. 20.
    Kromp A, Leonide A, Weber A, Ivers-Tiffée E (2011) Electrochemical analysis of reformate-fuelled anode supported SOFC. J Electrochem Soc 158(8):B980–B986CrossRefGoogle Scholar
  21. 21.
    Wan T, Saccoccio M, Chen C, Ciucci F (2015) Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim Acta 184:483–499CrossRefGoogle Scholar
  22. 22.
    Johnson D (2016) ZView Electrochemical Impedence Software, version 3.5e. Scriber Associates, Inc., Southern Pines, NCGoogle Scholar
  23. 23.
    Zhu H, Kee R, Janardhanan V, Deutschmann O, Goodwin D (2005) Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. J Electrochem Soc 152:A2427–A2440CrossRefGoogle Scholar
  24. 24.
    Gazzarri JI, Kesler O (2007) Non-destructive delamination detection in solid oxide fuel cells. J Power Sources 167:430–441CrossRefGoogle Scholar
  25. 25.
    Swierczek K, Gozu M (2007) Structural and electrical properties of selected La1-xSrxCo0.2Fe0.8O3 and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 perovskite type oxide. J Power Sources 173:695–699CrossRefGoogle Scholar
  26. 26.
    Gao Z, Zenou V, Kennouche D, Marks L, Barnett S (2015) Solid oxide cells with zirconia/ceria Bi-Layer electrolytes fabricated by reduced temperature firing. J Mater Chem A 3(18):9955–9964CrossRefGoogle Scholar
  27. 27.
    Nguyen H, Hardy J, Coyle C, Lub Z, Stevenson J (2017) Developing cost-effective dense continuous SDC barrier layers for SOFCs. ECS Trans 75(42):107–114CrossRefGoogle Scholar
  28. 28.
    Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J Electrochem Soc 155(1):B36–B41CrossRefGoogle Scholar
  29. 29.
    Muhammed Ali SA, Anwar M, Mahmud LS, Kalib NS, Muchtar A, Somalu MR (2019) Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 composite cathode. J Solid State Electrochem.  https://doi.org/10.1007/s10008-019-04208-6
  30. 30.
    Minh N (2018) Innovative, versatile and cost-effective solid oxide fuel cell stack concept, 19thAnnual solid oxide fuel cell project review meeting, Washington, DC, June 13–15Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gianfranco DiGiuseppe
    • 1
    Email author
  • David Thompson
    • 2
  • Cenk Gumeci
    • 2
  • A. Mohammed Hussain
    • 2
  • Nilesh Dale
    • 2
  1. 1.Kettering UniversityFlintUSA
  2. 2.Nissan Technical Center North AmericaFarmington HillsUSA

Personalised recommendations