pp 1–9 | Cite as

Synthesis, characterization, and electrochemical behavior of a new Nd1.9Sr0.1Ni0.9Co0.1O4 ± δ material as electrocatalyst for the oxygen reduction reaction

  • Sabah Amira
  • Mosbah FerkhiEmail author
  • Mabrouk Belghobsi
  • Ammar Khaled
  • Fabrice Mauvy
  • Jean-Claude Grenier
Original Paper


The oxygen reduction reaction (ORR) was studied using Nd1.9Sr0.1Ni0.9Co0.1O4 ± δ (NSNCO01) nickelates as cathode material at room temperature in aqueous phase. The citrate method was used for preparing the material. The electrochemical study of ORR was carried out in a 0.5-M NaOH solution at 25 °C with a rotating disk electrode. XRD and SEM analysis were performed to characterize the crystallinity of the material. XPS analysis is used to evaluate the surface state of the material. Electrochemical studies were followed by linear voltammetry and impedance spectroscopy measurements. The electrocatalyst composite Nd1.9Sr0.1Ni0.9Co0.1O4 ± δ/C, consisting of oxide nickelate and carbon (Vulcan XC-72), was mixed and deposited as a layer on a glassy carbon substrate. At room temperature, a significant electrocatalytic activity is observed for the studied material that shows a relatively high electrocatalytic activity for O2 reduction.


ORR process MIEC XPS analysis Impedance spectroscopy Electrocatalyst materials 



  1. 1.
    Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoe N (1990) Bi-functional oxygen electrode using large surface area La1 − xCaxCoO3 for rechargeable metal-air battery. J Electrochem Soc 137:3430CrossRefGoogle Scholar
  2. 2.
    Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Mol Catal 38:5–25CrossRefGoogle Scholar
  3. 3.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York, pp 21–112Google Scholar
  4. 4.
    Hossain MS, Tryk D, Yeager E (1989) Oxygen electroreduction on titanium-supported thin Pt films in alkaline solution. Electrochim Acta 34:1733–1737CrossRefGoogle Scholar
  5. 5.
    Appleby AJ, Savy M (1978) Kinetics of oxygen reduction reactions involving catalytic decomposition of hydrogen peroxide: Application to porous and rotating ring-disk electrodes. J Electroanal Chem Interfacial Electrochem 92:15–30CrossRefGoogle Scholar
  6. 6.
    Geniès-Bultel AL (1992) Doctoral thesis, INPGGoogle Scholar
  7. 7.
    Band R, Hukovld MM (1993) Electrochemistry 23:352CrossRefGoogle Scholar
  8. 8.
    Zagal J, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127:1506CrossRefGoogle Scholar
  9. 9.
    Bagotzky VS, Shumilova NA, Khrushcheva EL (1976) Electrochemical oxygen reduction on oxide catalysts. Electrochim Acta 21:919–924CrossRefGoogle Scholar
  10. 10.
    Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537CrossRefGoogle Scholar
  11. 11.
    Taylor RJ, Humffray AA (1975) Electroanal Chem 64:63CrossRefGoogle Scholar
  12. 12.
    Zurilla RW, Sen RK, Yeager E (1978) The kinetics of the oxygen reduction reaction on gold in alkaline solution. J Electrochem Soc 125:1103CrossRefGoogle Scholar
  13. 13.
    van Buren FR, Broers GHJ, Boesveld C, Bouman AJ (1978) Properties of La1 − xSrxBO3 − y (B = Co or Fe) compounds as oxygen electrodes in alkaline solution: general aspects. Electroanal Chem 87:381–388CrossRefGoogle Scholar
  14. 14.
    Hammouche A, Kahoul A, Sauer DU, De Doncker RW (2006) Influential factors on oxygen reduction at La1 − xCaxCoO3electrodes in alkaline electrolyte. J Power Sources 153:239–244CrossRefGoogle Scholar
  15. 15.
    Azizi F, Kahoul A, Azizi A (2009) Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Alloys Compd 484:555–560CrossRefGoogle Scholar
  16. 16.
    Cheriti M, Kahoul A (2012) Double perovskite oxides Sr2MMoO6 (M = Fe and Co) as cathode materials for oxygen reduction in alkaline medium. Mater Res Bull 47:135–141CrossRefGoogle Scholar
  17. 17.
    Hua J, Wang L, Shi L, Huanga H (2015) Oxygen reduction reactionactivity of LaMn1 − xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim Acta 161:115–123CrossRefGoogle Scholar
  18. 18.
    Hermann V, Dutriat D, Muller S, Comninellis C (2000) Mechanistic studies of oxygen reduction at La0.6Ca0.4CoO3-activated carbon electrodes in a channel flowcell. Electrochim Acta 46:365–372CrossRefGoogle Scholar
  19. 19.
    Shukla AK, Kannan AM, Hegde MS, Gopalakrishnan J (1991) Effect of counter cations on electrocatalytic activity of oxide pyrochlores towards oxygen reduction/evolution in alkaline medium: an electrochemical and spectroscopic study. J Power Sources 35:163–173CrossRefGoogle Scholar
  20. 20.
    Felthouse TR, Fraundorf PB, Friedman RM, Schosser CL (1991) Expanded lattice ruthenium pyrochlore oxide catalysts I. Liquid-phase oxidations of vicinal diols, primary alcohols, and related substrates with molecular oxygen. Catalysis 127:393–420CrossRefGoogle Scholar
  21. 21.
    Pouxa T, Napolskiy FS, Dintzer TG, Kéranguéven G, Istomin SY, Tsirlina GA, Antipov EV, Savinova ER (2012) Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today 189:83CrossRefGoogle Scholar
  22. 22.
    Javad S, fakhri A, Meunier J-L, Berk D (2014) Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: minimization of oxygen evolution. J Power Sourse 272:248CrossRefGoogle Scholar
  23. 23.
    Fabbri E, Mohamed R, Levecque P, Conrad O, Kötz R, Schmidt T-J (2014) Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ perovskite and carbon toward oxygen reduction in alkaline media. ACS Catal 4:1061–1070CrossRefGoogle Scholar
  24. 24.
    Li W, Yang D, Chen H, Gao Y, Li H (2015) Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium. Electrochim Acta 165:191–197CrossRefGoogle Scholar
  25. 25.
    Ferkhi M, Khelili S, Zerroual L, Ringuedé A, Cassir M (2009) Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1 − xCuxO4 + δ materials as new cathodes for solid oxide fuel cells. Electrochim Acta 54:6341–6346CrossRefGoogle Scholar
  26. 26.
    Ferkhi M, Ringuede A, Khaled A, Zerroual L, Cassir M (2012) La1.98Ni04 ± δ, a new cathode m7terial for solid oxide fuel cell: impedance spectroscopy study and compatibility with gadolinia-doped ceria and yttria-stabilized zirconia electrolytes. Electrochim Acta 75:80–87CrossRefGoogle Scholar
  27. 27.
    Ferkhi M, Rekaik M, Khaled A, Cassir M, Pireaux J (2017) Neodymium nickelate Nd2 − xSrxNi1 − yCoyO4 ± δ (x and y = 0 or 0.05) as cathode materials for the oxygen reduction reaction. Electrochim Acta 229:281–290CrossRefGoogle Scholar
  28. 28.
    Barr TL, Modern ESCA (1994) The principles and practice of X-ray photoelectron spectroscopy. CRC Press, Boca RatonGoogle Scholar
  29. 29.
    Ferkhi M, Yahia HA (2016) Electrochemical and morphological characterizations of La2 − xNiO4 ± d (x = 0.01, 0.02, 0.03 and 0.05) as new cathodes materials for IT-SOFC. Mater Res Bull 83:268–274CrossRefGoogle Scholar
  30. 30.
    Zhu Y, Zhou W, Yu J, Chen Y, Liu M, Shao Z (2016) Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chemistry 28:1691Google Scholar
  31. 31.
    Karlsson G (1985) Perovskite catalysts for air electrodes. Electrochim Acta 30:1555–1561CrossRefGoogle Scholar
  32. 32.
    Fierro JLG, Tejuca LG (1987) Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS. Surf Sci 27:453–457CrossRefGoogle Scholar
  33. 33.
    Mickevicius S, Grebinskij S, Bondarenka V, Vengalis B, Sliuziené K, Orlowski BA, Osinniy V, Drube W (2006) Investigation of epitaxial LaNiO3-d thin films by high-energy XPS. J Alloys Compd 423:107–111CrossRefGoogle Scholar
  34. 34.
    Moulder F, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray potoelectron spectroscopy. Perkin-Elmer, Eden Prairie, p 44Google Scholar
  35. 35.
    Ge X, Du Y, Li B, Hor TSA, Sindoro M, Zong Y, Zhang H, Liu Z (2016) Intrinsically conductive perovskite oxides with enhanced stability and electrocatalytic activity for oxygen reduction reactions. ACS Catal 6:7865–7871CrossRefGoogle Scholar
  36. 36.
    Zhan Y, Xu C, Lu M, Liu Z, Lee JY (2014) Mn and Co co-substituted Fe3O4 nanoparticules on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution. J Mater Chem A 2:16217–16223CrossRefGoogle Scholar
  37. 37.
    Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S (2015) Cobalt sulfide nanoparticles grown on nitrogen and sulfur co-doped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal 5:3625–3637CrossRefGoogle Scholar
  38. 38.
    Prabu M, Ramakrishnan P, Ganesan P, Manthiram A, Shanmugam (2015) LaTi0.65Fe0.35O3 − δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries. Nano Energy 15:92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sabah Amira
    • 1
    • 2
  • Mosbah Ferkhi
    • 1
    • 2
    Email author
  • Mabrouk Belghobsi
    • 1
  • Ammar Khaled
    • 1
    • 2
  • Fabrice Mauvy
    • 3
  • Jean-Claude Grenier
    • 3
  1. 1.Département de Chimie, Faculté des Sciences Exactes et InformatiqueUniversité Mohamed Seddik Ben YahiaJijelAlgeria
  2. 2.Laboratoire d’Etude sur les Interactions Matériaux-Environnement (LIME)Université Mohamed Seddik Ben YahiaJijelAlgeria
  3. 3.CNRSUniversité de Bordeaux, ICMCBPessacFrance

Personalised recommendations