Advertisement

Ionics

pp 1–10 | Cite as

MoSe2 nanosheets embedded in mesoporous carbon as anode materials for sodium ion batteries

  • Jie Li
  • Xiaoke Lei
  • Furong Qin
  • Chuanxin Zong
  • Lele Liu
  • Kai ZhangEmail author
Original Paper

Abstract

MoSe2 nanosheets embedded in a mesoporous carbon matrix is synthesized through a facile route, where molybdenum source is recrystallized forming nanocrystals and further react with selenium. To obtain fine nanocrystals, freeze-drying technique is used to creating a large subcooled temperature. With low MoSe2 content of ~ 54 wt%, the mesoporous MoSe2/C composite shows an initial capacity of 450 mA h g−1 and a reversible capacity of 276 mA h g−1 after 200 cycles.

Graphical abstract

Keywords

Anode Molybdenum diselenide Mesoporous Nanosheets Sodium ion battery 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant no. 51574288) and the Undergraduate Innovation Project of Central South University (CX20180337).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_2889_MOESM1_ESM.pdf (858 kb)
ESM 1 (PDF 857 kb)

References

  1. 1.
    Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  2. 2.
    Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J (2014) MoS2nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 53:12794–12798CrossRefGoogle Scholar
  3. 3.
    Su D, Wang G (2013) Single-crystalline bilayered V2O5Nanobelts for high-capacity sodium-ion batteries. ACS Nano 7:11218–11226CrossRefGoogle Scholar
  4. 4.
    Shen C, Long H, Wang G, Lu W, Shao L, Xie K (2018) Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. J Mater Chem A 6:6007–6014CrossRefGoogle Scholar
  5. 5.
    Yan D, Yu C, Bai Y, Zhang W, Chen T, Hu B, Sun Z, Pan L (2015) Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem Commun 51:8261–8264CrossRefGoogle Scholar
  6. 6.
    Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRefGoogle Scholar
  7. 7.
    Han X, Liu Y, Jia Z, Chen YC, Wan J, Weadock N, Gaskell KJ, Li T, Hu L (2014) Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett 14:139–147CrossRefGoogle Scholar
  8. 8.
    Jang JY, Lee Y, Kim Y, Lee J, Lee S-M, Lee KT, Choi N-S (2015) Interfacial architectures based on a binary additive combination for high-performance Sn4P3anodes in sodium-ion batteries. J Mater Chem A 3:8332–8338CrossRefGoogle Scholar
  9. 9.
    Ramireddy T, Xing T, Rahman MM, Chen Y, Dutercq Q, Gunzelmann D, Glushenkov AM (2015) Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J Mater Chem A 3:5572–5584CrossRefGoogle Scholar
  10. 10.
    Chang WC, Tseng KW, Tuan HY (2017) Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. Nano Lett 17:1240–1247CrossRefGoogle Scholar
  11. 11.
    Sun J, Lee HW, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y (2015) A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10:980–985CrossRefGoogle Scholar
  12. 12.
    Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129CrossRefGoogle Scholar
  13. 13.
    Ponrouch A, Goni AR, Palacin MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88CrossRefGoogle Scholar
  14. 14.
    Xie D, Xia XH, Zhong Y, Wang YD, Wang DH, Wang XL, Tu JP (2017) Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv Energy Mater 7:1601804CrossRefGoogle Scholar
  15. 15.
    Gu M, Kushima A, Shao Y, Zhang JG, Liu J, Browning ND, Li J, Wang C (2013) Probing the failure mechanism of SnO2Nanowires for sodium-ion batteries. Nano Lett 13:5203–5211CrossRefGoogle Scholar
  16. 16.
    Lu Y, Zhang N, Zhao Q, Liang J, Chen J (2015) Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries. Nanoscale 7:2770–2776CrossRefGoogle Scholar
  17. 17.
    Yang X, Wang C, Yang Y, Zhang Y, Jia X, Chen J, Ji X (2015) Anatase TiO2nanocubes for fast and durable sodium ion battery anodes. J Mater Chem A 3:8800–8807CrossRefGoogle Scholar
  18. 18.
    Li N, Liao S, Sun Y, Song HW, Wang CX (2015) Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability. J Mater Chem A 3:5820–5828CrossRefGoogle Scholar
  19. 19.
    Hu Z, Zhu Z, Cheng F, Zhang K, Wang J, Chen C, Chen J (2015) Pyrite FeS2for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci 8:1309–1316CrossRefGoogle Scholar
  20. 20.
    Shadike Z, Cao MH, Ding F, Sang L, Fu ZW (2015) Improved electrochemical performance of CoS2–MWCNT nanocomposites for sodium-ion batteries. Chem Commun (Camb) 51:10486–10489CrossRefGoogle Scholar
  21. 21.
    Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY (2016) Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater 6:1601057CrossRefGoogle Scholar
  22. 22.
    David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRefGoogle Scholar
  23. 23.
    Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J (2014) MoS2Nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem 126:13008–13012CrossRefGoogle Scholar
  24. 24.
    Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481CrossRefGoogle Scholar
  25. 25.
    Xie X, Ao Z, Su D, Zhang J, Wang G (2015) MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Funct Mater 25:1393–1403CrossRefGoogle Scholar
  26. 26.
    Xie X, Makaryan T, Zhao M, Van Aken KL, Gogotsi Y, Wang G (2016) Adv Energy Mater 6: 1502161, MoS2Nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteriesGoogle Scholar
  27. 27.
    Liu Y, Wang H, Cheng L, Han N, Zhao F, Li P, Jin C, Li Y (2016) TiS 2 nanoplates: a high-rate and stable electrode material for sodium ion batteries. Nano Energy 20:168–175CrossRefGoogle Scholar
  28. 28.
    Niu FE, Yang J, Wang NN, Zhang DP, Fan WL, Yang J, Qian YT (2017) MoSe2-covered N,P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv Funct Mater 27:1700522CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Fu Y, Yang X, Qu Y, Zhang Z (2015) Hierarchical MoSe2Nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance. ChemNanoMat 1:409–414CrossRefGoogle Scholar
  30. 30.
    Gao YP, Wu X, Huang KJ, Xing LL, Zhang YY, Liu L (2017) Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments. Crystengcomm 19:404–418CrossRefGoogle Scholar
  31. 31.
    Xie D, Xia X-H, Tang W-J, Zhong Y, Wang Y-D, Wang D-H, Wang X-L, Tu J-P (2017) Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage. J Mater Chem A 5:7578–7585CrossRefGoogle Scholar
  32. 32.
    Yamamoto M, Dutta S, Aikawa S, Nakaharai S, Wakabayashi K, Fuhrer MS, Ueno K, Tsukagoshi K (2015) Self-limiting layer-by-layer oxidation of atomically thin WSe2. Nano Lett 15:2067–2073CrossRefGoogle Scholar
  33. 33.
    Li J, Hu H, Qin F, Zhang P, Zou L, Wang H, Zhang K, Lai Y (2017) Flower-like MoSe2/C composite with expanded (0 0 2) planes of few-layer MoSe2as the anode for high-performance sodium-ion batteries. Chemistry 23:14004–14010CrossRefGoogle Scholar
  34. 34.
    Tang Y, Zhao Z, Wang Y, Dong Y, Liu Y, Wang X, Qiu J (2016) Carbon-stabilized interlayer-expanded few-layer mose2nanosheets for sodium ion batteries with enhanced rate capability and cycling performance. ACS Appl Mater Interfaces 8:32324–32332CrossRefGoogle Scholar
  35. 35.
    Xiang T, Tao S, Xu W, Fang Q, Wu C, Liu D, Zhou Y, Khalil A, Muhammad Z, Chu W, Wang Z, Xiang H, Liu Q, Song L (2017) Stable 1T-MoSe2and carbon nanotube hybridized flexible film: binder-free and high-performance Li-ion anode. ACS Nano 11:6483–6491CrossRefGoogle Scholar
  36. 36.
    Choi SH, Kang YC (2016) Fullerene-like MoSe2nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage. Nanoscale 8:4209–4216CrossRefGoogle Scholar
  37. 37.
    Park GD, Kim JH, Park SK, Kang YC (2017) MoSe2 embedded CNT-reduced graphene oxide composite microsphere with superior sodium ion storage and electrocatalytic hydrogen evolution performances. ACS Appl Mater Interfaces 9:10673–10683CrossRefGoogle Scholar
  38. 38.
    Sun D, Feng SM, Terrones M, Schaak RE (2015) Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chem Mater 27:3167–3175CrossRefGoogle Scholar
  39. 39.
    Qin F, Hu H, Jiang Y, Zhang K, Fang Z, Lai Y, Li J (2018) Mesoporous MoSe 2 /C composite as anode material for sodium/lithium ion batteries. J Electroanal Chem 823:67–72CrossRefGoogle Scholar
  40. 40.
    Wu C-T, Hu S-Y, Tiong K-K, Lee Y-C (2017) Anisotropic effects in the Raman scattering of Re-doped 2H-MoSe2 layered semiconductors. Results Phys 7:4096–4100CrossRefGoogle Scholar
  41. 41.
    Luo ZG, Zhou J, Wang LR, Fang GZ, Pan AQ, Liang SQ (2016) Two-dimensional hybrid nanosheets of few layered MoSe2on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. J Mater Chem A 4:15302–15308CrossRefGoogle Scholar
  42. 42.
    Roy A, Ghosh A, Kumar A, Mitra S (2018) A high-performance sodium anode composed of few-layer MoSe2and N, P doped reduced graphene oxide composites. Inorg Chem Front 5:2189–2197CrossRefGoogle Scholar
  43. 43.
    Shi ZT, Kang W, Xu J, Sun LL, Wu C, Wang L, Yu YQ, Yu DY, Zhang W, Lee CS (2015) In situ carbon-doped Mo(Se0.85S0.15)2 hierarchical nanotubes as stable anodes for high-performance sodium-ion batteries. Small 11:5667–5674CrossRefGoogle Scholar
  44. 44.
    Ge P, Hou H, Banks CE, Foster CW, Li S, Zhang Y, He J, Zhang C, Ji X (2018) Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Mater 12:310–323CrossRefGoogle Scholar
  45. 45.
    Xie D, Tang WJ, Wang YD, Xia XH, Zhong Y, Zhou D, Wang DH, Wang XL, Tu JP (2016) Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res 9:1618–1629CrossRefGoogle Scholar
  46. 46.
    Wang H, Lan X, Jiang D, Zhang Y, Zhong H, Zhang Z, Jiang Y (2015) Sodium storage and transport properties in pyrolysis synthesized MoSe 2 nanoplates for high performance sodium-ion batteries. J Power Sources 283:187–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jie Li
    • 1
    • 2
  • Xiaoke Lei
    • 1
  • Furong Qin
    • 1
  • Chuanxin Zong
    • 1
  • Lele Liu
    • 1
  • Kai Zhang
    • 1
    • 2
    Email author
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Engineering Research Centre of Advanced Battery MaterialsThe Ministry of EducationChangshaChina

Personalised recommendations