Advertisement

Ionics

pp 1–10 | Cite as

Porous carbon electrodes from activated wasted coffee grounds for capacitive deionization

  • Min QianEmail author
  • Xiao Yang Xuan
  • Li Kun Pan
  • Shang Qing Gong
Original Paper

Abstract

Wasted coffee grounds (WCGs) were activated by a pyrolysis process using KOH, where the porosity increased with temperature, exhibiting a micropore-dominant structure. WCGs upon an activation temperature of 800 °C (AWCG800) showed a surface area up to 1856 m2 g−1 and a specific capacitance of 180.3 F g−1 in 1 M NaCl solution at a scan rate of 10 mV s−1. The AWCG800 electrodes showed an electrosorption capacity up to 12.50 and 16.50 mg g−1 in NaCl solution at cell voltages of 1.2 and 1.4 V, respectively, with an initial concentration of 5 mM. X-ray photoelectron spectroscopy analysis indicated that AWCG800 maintained a high carbon content of 87 at% upon the activation process. The study suggests a practical way for converting WCGs into mesoporous and microporous carbons with large surface area and pore volume, high carbon component, and good wettability to water, which is promising for capacitive deionization application.

Keywords

Capacitive deionization Microporous carbon Activated waste coffee grounds 

Notes

Funding

This work is sponsored by the National Natural Science Foundation of China (Grant No. 61804054), the Natural Science Foundation of Shanghai (18ZR1410400), Shanghai Sailing Program (17YF1403300), and the Fundamental Research Funds for the Central Universities (Project No. 222201714017).

Supplementary material

11581_2019_2887_MOESM1_ESM.doc (1.5 mb)
ESM 1 (DOC 1501 kb)

References

  1. 1.
    Dong Q, Wang G, Wu T, Peng S, Qiu J (2015) Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes. J Colloid Interface Sci 446:373–378Google Scholar
  2. 2.
    Li H, Pan L, Lu T, Zhan Y, Nie C, Sun Z (2011) A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J Electroanal Chem 653:40–44Google Scholar
  3. 3.
    Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V (2015) Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ Sci 8:2296–2319Google Scholar
  4. 4.
    Gao Y, Pan L, Li H, Zhang Y, Zhang Z, Chen Y, Sun Z (2009) Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Films 517:1616–1619Google Scholar
  5. 5.
    Wang M, Xu X, Tang J, Hou S, Hossain MSA, Pan L, Yamauchi Y (2017) High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches. Chem Commun 53:10784–10787Google Scholar
  6. 6.
    Nie C, Pan L, Li H, Chen T, Lu T, Sun Z (2012) Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization. J Electroanal Chem 666:85–88Google Scholar
  7. 7.
    Wang XZ, Li MG, Chen YW, Cheng RM, Huang SM, Pan LK, Sun Z (2006) Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes. Appl Phys Lett 89:053127Google Scholar
  8. 8.
    Zhang L, Liu Y, Lu T, Pan LK (2017) Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization. J Electroanal Chem 804:179–184Google Scholar
  9. 9.
    Wang G, Pan C, Wang L, Dong Q, Yu C, Zhao Z, Qiu J (2012) Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochim Acta 69:65–70Google Scholar
  10. 10.
    Wang G, Dong Q, Ling Z, Pan C, Yu C, Qiu J (2012) Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. J Mater Chem 22:21819–21823Google Scholar
  11. 11.
    Liu J, Wang S, Yang J, Liao J, Lu M, Pan H, An L (2014) ZnCl2 activated electrospun carbon nanofiber for capacitive desalination. Desalination 344:446–453Google Scholar
  12. 12.
    Sui ZY, Meng QH, Zhang XT, Ma R, Cao B (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771Google Scholar
  13. 13.
    Li H, Zou L, Pan L, Sun Z (2010) Novel graphene-like electrodes for capacitive deionization. Environ Sci Technol 44:8692–8697Google Scholar
  14. 14.
    Li H, Lu T, Pan L, Zhang Y, Sun Z (2009) Electrosorption behavior of graphene in NaCl solutions. J Mater Chem 19:6773–6779Google Scholar
  15. 15.
    Liu P, Wang H, Yan T, Zhang J, Shi L, Zhang D (2016) Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. J Mater Chem A 4:5303–5313Google Scholar
  16. 16.
    Li N, An JK, Wang X, Wang HM, Lu L, Ren Z (2017) Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization. Desalination 419:20–28Google Scholar
  17. 17.
    Porada S, Weinstein L, Dash R, van der Wal A, Bryjak M, Gogotsi Y, Biesheuvel PM (2012) Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl Mater Interfaces 4:1194–1199Google Scholar
  18. 18.
    Liu J, Lu M, Yang J, Cheng J, Cai W (2015) Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis. Electrochim Acta 151:312–318Google Scholar
  19. 19.
    Xie Z, Cheng J, Yan J, Cai W, Nie P, Chan HTH, Liu J (2017) Polydopamine modified activated carbon for capacitive desalination. J Electrochem Soc 164:A2636–A2643Google Scholar
  20. 20.
    Xie Z, Shang X, Yan J, Hussain T, Nie P, Liu J (2018) Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochim Acta 290:666–675Google Scholar
  21. 21.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191Google Scholar
  22. 22.
    Pei SF, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228Google Scholar
  23. 23.
    Zhang RF, Zhang YY, Wei F (2017) Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and application. Chem Soc Rev 46:3661–3715Google Scholar
  24. 24.
    Gao Y, Zhou YS, Xiong W, Mahjouri-Samani M, Mitchell M, Lu YF (2009) Controlled growth of carbon nanotubes on electrodes under different bias polarity. Appl Phys Lett 95:143117Google Scholar
  25. 25.
    Chen YZ, Yue MB, Huang ZH, Kang FY (2014) Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization. Chem Eng J 252:30–37Google Scholar
  26. 26.
    Villar I, Roldan S, Ruiz V, Granda M, Blanco C, Menendez R, Santamaria R (2010) Capacitive deionization of NaCl solutions with modified activated carbon electrodes. Energy Fuel 24:3329–3333Google Scholar
  27. 27.
    Kawano T, Kubota M, Onyango MS, Watanabe F, Matsuda H (2008) Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Appl Therm Eng 28:865–871Google Scholar
  28. 28.
    Green coffee production for 2016 (2018) World regions/crops/production quantity from picklist. Food and Agricultural Organization of the United Nations, Statistics Division. Retrieved 14 September 2018. http://www.fao.org/faostat/en/#data/QC
  29. 29.
    Zhang N (2014) Coffee market in China: trends & consumer strategies, Master Dissertation, Universidad Politécnica de ValenciaGoogle Scholar
  30. 30.
    Monthly Coffee Market Report July 2018. Retrieved 14 September 2018. http://www.ico.org/documents/cy2017-18/cmr-0718-e.pdf
  31. 31.
    Jenkins RW, Stageman NE, Fortune CM, Chuck CJ (2014) Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. EnergyFuel 28:1166–1174Google Scholar
  32. 32.
    Wang C, Wen W, Hsu H, Yao B (2016) High-capacitance KOH-activated nitrogen-containing porous carbon materials from waste coffee grounds in supercapacitor. Adv Powder Technol 27:1387–1395Google Scholar
  33. 33.
    Ramasahayam SK, Clark AL, Hicks Z, Viswanathan T (2015) Spent coffee grounds derived P, N co-doped C as electrocatalyst for supercapacitor applications. Electrochim Acta 168:414–422Google Scholar
  34. 34.
    Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beams for high performance supercapacitors. Electrochem Commun 10:1594–1597Google Scholar
  35. 35.
    Park MH, Yun YS, Cho SY, Kim NR, Jin H (2016) Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors. Carbon Lett 19:66–71Google Scholar
  36. 36.
    Huang C, Sun T, Hulicova-Jurcakova D (2013) Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons. ChemSusChem 6:2330–2339Google Scholar
  37. 37.
    Tashima D, Hamasuna Y, Mishima D, Kumagai S, Maggen JDW (2014) Microporous activated carbons from used coffee grounds for application to electric double-layer capacitors. IEEJ Trans 9:343–350Google Scholar
  38. 38.
    Xu X, Pan L, Liu FY, Lu T, Sun Z (2015) Enhanced capacitive deionization performance of graphene by nitrogen doping. J Colloid Interface Sci 445:143–150Google Scholar
  39. 39.
    Liu Y, Chen T, Lu T, Sun Z, Chua DHC, Pan L (2015) Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochim Acta 158:403–409Google Scholar
  40. 40.
    Xu XT, Wang M, Liu Y, Lu T, Pan L (2016) Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. J Mater Chem A 4:5467–5473Google Scholar
  41. 41.
    Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42:2867–2872Google Scholar
  42. 42.
    Liu Y, Xu XT, Wang M, Lu T, Sun Z, Pan L (2015) Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem Commun 51:12020–12023Google Scholar
  43. 43.
    Hou S, Wang M, Xu X, Li Y, Li Y, Lu T, Pan L (2017) Nitrogen-doped carbon spheres: a new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor. J Colloid Interface Sci 491:161–166Google Scholar
  44. 44.
    Shi W, Li H, Cao X, Leong ZY, Zhang J, Chen T, Zhang H, Yang HY (2016) Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores. Sci Rep 6:18966Google Scholar
  45. 45.
    Li G, Hou P, Zhao S, Liu C, Cheng H (2016) A flexible cotton-derived carbon sponge for high-performance capacitive deionization. Carbon 101:1–8Google Scholar
  46. 46.
    Zhao S, Yan T, Wang H, Chen G, Huang L, Zhang J, Shi L, Zhang D (2016) High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization. Appl Surf Sci 369:460–469Google Scholar
  47. 47.
    Razjooei F, Singh K, Kang TH, Chaudhari N, Yuan J, Yu JS (2017) Urine to highly porous heteroatom-doped carbons for supercapacitor: a value added journey for human waste. Sci Rep 7:10910Google Scholar
  48. 48.
    He D, Wong CE, Tang W, Kovalsky P, Waite TD (2016) Faradaic reactions in water desalination by bath-mode capacitive deionization. Environ Sci Technol Lett 3:222–226Google Scholar
  49. 49.
    Zhu C, Wang M, Li T, Lu T, Pan L (2017) In situ synthesis of porous Co3O4 polyhedra/carbon nanotubes heterostructures for highly efficient supercapacitors. Ionics 23:2175–2183Google Scholar
  50. 50.
    Ehrburger P, Addoun A, Addoun F, Donnet JB (1986) Carbonization of coals in the presence of alkaline hydroxides and carbonates: formation of activated carbons. Fuel 65:1447–1449Google Scholar
  51. 51.
    Lu C, Xu S, Liu C (2010) The role of K2CO3 during the chemical activation of petroleum coke with KOH. J Anal Appl Pyrolysis 87:282–287Google Scholar
  52. 52.
    Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison JS, Keesman KJ, Kaskel S, Biesheuvel PM, Presser V (2013) Direct prediction of desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ Sci 6:3700–3712Google Scholar
  53. 53.
    Wang M, Xu X, Li Y, Lu T, Pan L (2018) Enhanced desalination performance of anion-exchange membrane capacitive deionization via effectively utilizing cathode oxidation. Desalination 443:221–227Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Min Qian
    • 1
    Email author
  • Xiao Yang Xuan
    • 1
  • Li Kun Pan
    • 2
  • Shang Qing Gong
    • 1
  1. 1.Department of Physics, School of ScienceEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Shanghai Key Laboratory of Magnetic Resonance, School of Physics and MaterialsEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations