Advertisement

Ionics

pp 1–10 | Cite as

Ascorbic acid electrocatalytic activity in different electrolyte solutions using electrodeposited Co(OH)2

  • Marcelo Rodrigues da Silva PelissariEmail author
  • Edson Archela
  • Cesar Ricardo Teixeira Tarley
  • Luiz Henrique Dall’Antonia
Original Paper
  • 28 Downloads

Abstract

The present paper describes the use of electrodeposited Co(OH)2 on transparent conducting fluorine-doped tin oxide electrode (FTO) as functional material for ascorbic acid electrooxidation in different electrolyte solutions. The structure, composition, and morphology of film were investigated through Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectrum (EDS), and scanning electron microscope (SEM). The electrochemical characterization in different electrolyte solutions was carried out by cyclic voltammetry (CV) and chronoamperometry. The voltammetric profile showed the presence of two possible reactions involving almost reversible redox processes during sweeping potential in KOH solution and a single redox process in KCl solution. The Co(OH)2 film presented electrocatalytic activity in ascorbic acid electrooxidation, being the sensitivity values found were 182.3 mA L mol−1 cm−2 and 119.4 mA L mol−1 cm−2 in KOH and KCl solutions, respectively. The results showed that the electrolytic solution strongly influenced the sensitivity of the FTO/Co(OH)2 film in ascorbic acid electrooxidation reaction. Kinetic studies showed that the electrode process was controlled by mass diffusion. In addition, chronoamperometric technique was carried out to verify the stability of the electrode. The obtained results reveal a good stability of electrode in the KCl solution; once in current density terms, the results are quite similar.

Keywords

Electrodeposited Cobalt hydroxide Electrooxidation Ascorbic acid 

Notes

Acknowledgements

Marcelo R. Silva would like to thank CNPQ for scholarship granted.

Funding information

This work is financially supported by CNPQ (406459/2016-9), Fundação Araucária (15585/2010), and NEMAN (Pronex, 17378/2009).

References

  1. 1.
    Zare HR, Rajabzadeh N, Nasirizadeh N, Ardakani MM (2006) Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J Electroanal Chem 589:60–69CrossRefGoogle Scholar
  2. 2.
    Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9CrossRefGoogle Scholar
  3. 3.
    O’Connell PJ, Gormally C, Pravda M, Guilbault GG (2001) Development of an amperometric l-ascorbic acid (vitamin C) sensor based on electropolymerised aniline for pharmaceutical and food analysis. Anal Chim Acta 431:239–247CrossRefGoogle Scholar
  4. 4.
    Pinnel SR, Murad S, Darr D (1987) Induction of collagen synthesis by ascorbic acid. A possible mechanism. Arch Dermatol 123:1684–1886CrossRefGoogle Scholar
  5. 5.
    Hussain MZ, Ghani QP, Hunt TK (1989) Inhibition of prolyl hydroxylase by poly(ADP-ribose) and phosphoribosyl-AMP. Possible role of ADP-ribosylation in intracellular prolyl hydroxylase regulation. J Biol Chem 264:7850–7855Google Scholar
  6. 6.
    Taylor TV, Rimmer S, Day B, Butccher J, Dymock IW (1974) Ascorbic acid supplementation in the treatment of pressure-sores. Lancet 2:544–546CrossRefGoogle Scholar
  7. 7.
    Barbul A (1990) Immune aspects of wound repair. Clin Plast Surg 17:433–442Google Scholar
  8. 8.
    Akyilmaz E, Dinckaya E (1999) A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of l-ascorbic acid. Talanta 50:87–93CrossRefGoogle Scholar
  9. 9.
    Suntornsuk L, Gritsanapun W, Nilkamhank S, Paochom A (2002) Quantitation of vitamin C content in herbal juice using direct titration. J Pharm Biomed Anal 28:849–855CrossRefGoogle Scholar
  10. 10.
    Wu X, Diao Y, Sun C, Yang J, Wang Y, Sun S (2003) Fluorimetric determination of ascorbic acid with o-phenylenediamine. Talanta 59:95–99CrossRefGoogle Scholar
  11. 11.
    Koncki R, Lenarczuk T, Adomska A, Glab S (2001) Optical biosensors based on Prussian Blue films. Analyst 126:1080–1085CrossRefGoogle Scholar
  12. 12.
    Harraz FA, Faisal M, Ismail AA, Al-Sayari SA, Al-Salami AE, Al-Hajry A, Al-Assiri MS (2019) TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor. J Electroanal Chem 832:225–232CrossRefGoogle Scholar
  13. 13.
    Ejaz A, Jeon S (2017) A highly stable and sensitive GO-XDA-Mn2O3 electrochemical sensor for simultaneous electrooxidation of paracetamol and ascorbic acid. Electrochim Acta 245:742–751CrossRefGoogle Scholar
  14. 14.
    Harraz FA, Faisal M, Al-Salami AE, El-Toni AM, Almadiy AA, Al-Sayari SA, Al-Assiri MS (2019) Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid. Mater Lett 234:96–100CrossRefGoogle Scholar
  15. 15.
    Ghanbari K, Hajian A (2017) Electrochemical characterization of Au/ZnO/PPy/RGO nanocomposite and its application for simultaneous determination of ascorbic acid, epinephrine, and uric acid. J Electroanal Chem 801:466–479CrossRefGoogle Scholar
  16. 16.
    Selvarajan S, Suganthi A, Rajarajan M (2017) A facile approach to synthesis of mesoporous SnO2/chitosan nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Surf Interfaces 7:146–156CrossRefGoogle Scholar
  17. 17.
    Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:16184CrossRefGoogle Scholar
  18. 18.
    Yin H, Tang Z (2016) Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem Soc Rev 45:4873–4891CrossRefGoogle Scholar
  19. 19.
    Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430CrossRefGoogle Scholar
  20. 20.
    Yin H, Tang H, Wang D, Gao Y, Tang Z (2012) Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 6(9):8288–8297CrossRefGoogle Scholar
  21. 21.
    Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z (2014) Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12):12660–12668CrossRefGoogle Scholar
  22. 22.
    Houshmand M, Jabbari A, Heli H, Hajjizadeh M, Moosavi-Movahedi AA (2008) Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode. J Solid State Electrochem 8:1117–1128CrossRefGoogle Scholar
  23. 23.
    Karim-Nezhad G, Hasanzadeh M, Saghatforoush L, Shadjou N, Earshad S, Khalilzadeh B (2009) Kinetic study of electrocatalytic oxidation of carbohydrates on cobalt hydroxide modified glassy carbon electrode. J Braz Chem Soc 20:141–151CrossRefGoogle Scholar
  24. 24.
    Jafarian M, Mahjani MG, Heli H, Gobal F, Khajehsharifi H, Hamedi MH (2003) A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode. Electrochim Acta 48:3423–3429CrossRefGoogle Scholar
  25. 25.
    Hasanzadeh M, Karim-Nezhad G, Shadjou N, Hajjizadeh M, Khalilzadeh B, Saghatforoush L, Abnosi MH, Babaei A, Ershad S (2009) Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor for electrooxidation and determination of some amino acids. Anal Biochem 389:130–137CrossRefGoogle Scholar
  26. 26.
    Wang Y, Zhang D, Liu H (2010) A study of the catalysis of cobalt hydroxide towards the oxygen reduction in alkaline media. J Power Source 195:3135–3139CrossRefGoogle Scholar
  27. 27.
    Karim-Nezhad G, Hasanzadeh M, Saghatforoush L, Shadjou N, Khalilzadeh B, Ershad S (2009) Electro-oxidation of ascorbic acid catalyzed on cobalt hydroxide-modified glassy carbon electrode. J Serb Chem Soc 74:581–593CrossRefGoogle Scholar
  28. 28.
    Maile NC, Shinde SK, Koli RR, Fulari AV, Kim DY, Fular VJ (2019) Effect of different electrolytes and deposition time on the supercapacitor properties of nanoflake-like Co(OH)2 electrodes. Ultrason Sonochem 51:49–57CrossRefGoogle Scholar
  29. 29.
    Hao J, Li W, Zuo X, Zheng D, Liang X, Qiang Y, Tan B, Xiang B, Zou X (2018) Phosphate ion functionalization of Co(OH)2 nanosheets by a simple immersion method. J Alloys Compd 768:57–64CrossRefGoogle Scholar
  30. 30.
    Jagadale AD, Jamadade VS, Pusawale SN, Lokhande CD (2012) Effect of scan rate on the morphology of potentiodynamically deposited β-Co(OH)2 and corresponding supercapacitive performance. Electrochim Acta 78:92–97CrossRefGoogle Scholar
  31. 31.
    Vidotti M. Van Greco C, Ponzio EA, Torresi SIC (2006) Electrochem Commun 8:554–560Google Scholar
  32. 32.
    Brownson JRS, Lévy-Clément C (2008) Electrodeposition of α- and β-cobalt hydroxide thin films via dilute nitrate solution reduction. Phys Status Solidi 245:1785–1791CrossRefGoogle Scholar
  33. 33.
    Maile NC, Koli RR, Mamlayya VB, Chougale UM, Fulari VJ (2017) Bulletin of Laser and Spectroscopy Society of India 23:63–70Google Scholar
  34. 34.
    Aghazadeh M, Barmi A-A M, Yousefi T (2012) Synthesis, characterization, and supercapacitive properties of β-Co(OH)2 leaf-like nanostructures. J Iran Chem Soc 9:225–229CrossRefGoogle Scholar
  35. 35.
    Do J-S, Dai R-F (2009) Cobalt oxide thin film prepared by an electrochemical route for Li-ion battery. J Power Source 189:204–210CrossRefGoogle Scholar
  36. 36.
    Wang SL, Qian LQ, Xu H, Lue GL, Dong WJ, Tang WH (2009) Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. J Alloys Compd 476:739–743CrossRefGoogle Scholar
  37. 37.
    Hu Z, Mo L, Feng X, Shi J, Wang Y, Me Y (2009) Synthesis and electrochemical capacitance of sheet-like cobalt hydroxide. Mater Chem Phys 114:53–57CrossRefGoogle Scholar
  38. 38.
    Song D, Wang Y, Wang Q, Wang Y, Jiao L, Yuan H (2010) Effect and function mechanism of amorphous sulfur on the electrochemical properties of cobalt hydroxide electrode. J Power Source 195:7115–7119CrossRefGoogle Scholar
  39. 39.
    Tabeshnia M, Rashvandavei M, Amini R, Pashaee F (2010) Electrocatalytic oxidation of some amino acids on a cobalt hydroxide nanoparticles modified glassy carbon electrode. J Electroanal Chem 647:181–186CrossRefGoogle Scholar
  40. 40.
    Silva MR, Ferreira MS, Dall’Antonio LH (2012) Ascorbate electro-oxidation by modified electrodes: Polypyrrole and polypyrrole/Ni(OH)2 composite thin films. Thin Solid Films 520:6424–6428CrossRefGoogle Scholar
  41. 41.
    Zhou W-J, Xu M-W, Zhao D-D, Xu C-L, Hu-Lin L (2009) Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors. Microporous Mesoporous Mater 117:55–60CrossRefGoogle Scholar
  42. 42.
    Saghatforoush L, Hasanzadeh M, Karim-Nezhad G, Ershad S, Shadjou N, Khalilzadeh B, Hajjizadeh M (2009) Bull Kor Chem Soc 30:1341–1348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marcelo Rodrigues da Silva Pelissari
    • 1
    Email author
  • Edson Archela
    • 2
  • Cesar Ricardo Teixeira Tarley
    • 2
  • Luiz Henrique Dall’Antonia
    • 2
  1. 1.Engineering College, Industrial Technical College/CTIUNESP–São Paulo State UniversityBauruBrazil
  2. 2.Department of ChemistryUEL–State University of LondrinaLondrinaBrazil

Personalised recommendations