Skip to main content

Advertisement

Log in

The enhanced performance of lithium sulfur battery with ionic liquid-based electrolyte mixed with fluorinated ether

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was selected as a co-solvent of ionic liquid for fabricating the functional electrolyte of Li-S batteries. The basic properties of the electrolyte and electrochemical performances of the cell with alterative TTE contents were intensively investigated. It is found that the fluorinated ether helps to promote ion conduction in the electrolyte, modify and stabilize SEI on Li metal, reduce charge transfer impedance, as well as restrict dissolution and shuttle of polysulfides. Consequently, high reversible capacity, good cycle, and rate capability are achieved at moderate TTE addition. The novel electrolyte guides a promising direction to construct Li-S batteries with high-energy density, long life, and high safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high-energy lithium–sulfur batteries. Chem Soc Rev 45:5605–5634

    Article  CAS  PubMed  Google Scholar 

  2. Zeng Z, Liu X (2018) Sulfur immobilization by “chemical anchor” to suppress the diffusion of polysulfides in lithium-sulfur batteries. Adv Mater Interfaces 5:1701274

    Article  CAS  Google Scholar 

  3. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    Article  CAS  Google Scholar 

  4. Carbone L, Gobet M, Peng J, Devany M, Scrosati B, Greenbaum S, Hassoun J (2015) Comparative study of ether-based electrolytes for application in lithium-sulfur battery. ACS Appl Mater Interfaces 7:13859–13865

    Article  CAS  PubMed  Google Scholar 

  5. Barchasz C, Leprêtre J-C, Patoux S, Alloin F (2013) Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochim Acta 89:737–743

    Article  CAS  Google Scholar 

  6. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  PubMed  Google Scholar 

  7. Park J-W, Yamauchi K, Takashima E, Tachikawa N, Ueno K, Dokko K, Watanabe M (2013) Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium–sulfur batteries. J Phys Chem C 117:4431–4440

    Article  CAS  Google Scholar 

  8. Park J-W, Ueno K, Tachikawa N, Dokko K, Watanabe M (2013) Ionic liquid electrolytes for lithium–sulfur batteries. J Phys Chem C 117:20531–20541

    Article  CAS  Google Scholar 

  9. Ma G, Wen Z, Jin J, Wu M, zhang G, Wu X, Zhang J (2014) The enhanced performance of Li–S battery with P14YRTFSI-modified electrolyte. Solid State Ionics 262:174–178

    Article  CAS  Google Scholar 

  10. Park J-W, Yoshida K, Tachikawa N, Dokko K, Watanabe M (2011) Limiting current density in bis(trifluoromethylsulfonyl)amide-based ionic liquid for lithium batteries. J Power Sources 196:2264–2268

    Article  CAS  Google Scholar 

  11. Ai G, Wang Z, Dai Y, Mao W, Zhao H, Fu Y, En Y, Battaglia V, Liu G (2016) Improving the over-all performance of Li-S batteries via electrolyte optimization with consideration of loading condition. Electrochim Acta 218(1–7):1–7

    Article  CAS  Google Scholar 

  12. Drvarič Talian S, Bešter-Rogač M, Dominko R (2017) The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium–sulfur batteries. Electrochim Acta 252:147–153

    Article  CAS  Google Scholar 

  13. Yang Y, Men F, Song Z, Zhou Y, Zhan H (2017) N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid based hybrid electrolyte for lithium sulfur batteries. Electrochim Acta 256:37–43

    Article  CAS  Google Scholar 

  14. Wang Y, Zhang Z, Haibara M, Sun D, Ma X, Jin Y, Munakata H, Kanamura K (2017) Reduced polysulfide shuttle effect by using polyimide separators with ionic liquid-based electrolytes in lithium-sulfur battery. Electrochim Acta 255:109–117

    Article  CAS  Google Scholar 

  15. Wu F, Zhu Q, Chen R, Chen N, Chen Y, Li L (2015) A safe electrolyte with counterbalance between the ionic liquid and tris(ethylene glycol)dimethyl ether for high performance lithium-sulfur batteries. Electrochim Acta 184:356–363

    Article  CAS  Google Scholar 

  16. Azimi N, Weng W, Takoudis C, Zhang Z (2013) Improved performance of lithium–sulfur battery with fluorinated electrolyte. Electrochem Commun 37:96–99

    Article  CAS  Google Scholar 

  17. Drvarič Talian S, Jeschke S, Vizintin A, Pirnat K, Arčon I, Aquilanti G, Johansson P, Dominko R (2017) Fluorinated ether based electrolyte for high-energy lithium–sulfur batteries: Li+ solvation role behind reduced polysulfide solubility. Chem Mater 29:10037–10044

    Article  CAS  Google Scholar 

  18. Gu S, Qian R, Jin J, Wang Q, Guo J, Zhang S, Zhuo S, Wen Z (2016) Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries. Phys Chem Chem Phys 18:29293–29299

    Article  CAS  PubMed  Google Scholar 

  19. Yang W, Yang W, Feng J, Ma Z, Shao G (2016) High capacity and cycle stability rechargeable lithium–sulfur batteries by sandwiched gel polymer electrolyte. Electrochim Acta 210:71–78

    Article  CAS  Google Scholar 

  20. Lu H, Zhang K, Yuan Y, Qin F, Zhang Z, Lai Y, Liu Y (2015) Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether. Electrochim Acta 161:55–62

    Article  CAS  Google Scholar 

  21. Xiong S, Xie K, Blomberg E, Jacobsson P, Matic A (2014) Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. J Power Sources 252:150–155

    Article  CAS  Google Scholar 

  22. Xiong S, Xie K, Diao Y, Hong X (2014) Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J Power Sources 246:840–845

    Article  CAS  Google Scholar 

  23. Zu C, Azimi N, Zhang Z, Manthiram A (2015) Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte. J Mater Chem A 3:14864–14870

    Article  CAS  Google Scholar 

  24. Azimi N, Xue Z, Bloom I, Gordin ML, Wang D, Daniel T, Takoudis C, Zhang Z (2015) Understanding the effect of a fluorinated ether on the performance of lithium–sulfur batteries. ACS Appl Mater Interfaces 7:9169–9177

    Article  CAS  PubMed  Google Scholar 

  25. Gordin ML, Dai F, Chen S, Xu T, Song J, Tang D, Azimi N, Zhang Z, Wang D (2014) Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries. ACS Appl Mater Interfaces 6:8006–8010

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Z, Wang S, Liang R, Li Z, Shi Z, Chen G (2014) Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries. J Mater Chem A 2:13509–13512

    Article  CAS  Google Scholar 

  27. Xu H, Deng Y, Shi Z, Qian Y, Meng Y, Chen G (2013) Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries. J Mater Chem A 1:15142–15149

    Article  CAS  Google Scholar 

  28. Liu J, Wang C, Liu B, Ke X, Liu L, Shi Z, Zhang H, Guo Z (2017) Rational synthesis of MnO2@CMK/S composite as cathode materials for lithium–sulfur batteries. Mater Lett 195:236–239

    Article  CAS  Google Scholar 

  29. Liu J, Liu B, Wang C, Huang Z, Hu L, Ke X, Liu L, Shi Z, Guo Z (2017) Walnut shel-derived activated carbon: synthesis and its application in the sulfur cathode for lithium-sulfur batteries. J Alloys Compd 718:373–378

    Article  CAS  Google Scholar 

  30. Wang J, Chew S, Zhao Z, Ashraf S, Wexler D, Chen J, Ng S, Chou S, Liu H (2008) Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46:229–235

    Article  CAS  Google Scholar 

  31. Wang L, Byon H (2013) N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide-based organic electrolyte for high performance lithium-sulfur batteries. J Power Sources 236:207–214

    Article  CAS  Google Scholar 

  32. Cuisinier M, Cabelguen PE, Adams BD, Garsuch A, Balasubramanian M, Nazar LF (2014) Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy Environ Sci 7:2697–2705

    Article  CAS  Google Scholar 

  33. Lu H, Yuan Y, Hou Z, Lai Y, Zhang K, Liu Y (2016) Solvate ionic liquid electrolyte with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether as a support solvent for advanced lithium–sulfur batteries. RSC Adv 6:18186–18190

    Article  CAS  Google Scholar 

  34. Cui X, Shan Z, Cui L, Tian J (2013) Enhanced electrochemical performance of sulfur/carbon nanocomposite material prepared via chemical deposition with a vacuum soaking step. Electrochim Acta 105:23–30

    Article  CAS  Google Scholar 

  35. Lu H, Yuan Y, Zhang K, Qin F, Lai Y, Liu Y (2015) Application of partially fluorinated ether for improving performance of lithium/sulfur batteries. J Electrochem Soc 162:A1460–A1465

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (no. 51604221, 51372197, and 51574288), the Key Innovation Team of Shaanxi Province (2014KCT-04), and the Key Research and Development Program of Shaanxi Province (2017GY-133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Lu or Huiling Du.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Chen, Z., Du, H. et al. The enhanced performance of lithium sulfur battery with ionic liquid-based electrolyte mixed with fluorinated ether. Ionics 25, 2685–2691 (2019). https://doi.org/10.1007/s11581-018-2814-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2814-x

Keywords

Navigation