Advertisement

Ionics

pp 1–8 | Cite as

NiO@ graphite carbon nanocomposites derived from Ni-MOFs as supercapacitor electrodes

  • Shao-Rui Wu
  • Jing-Bing Liu
  • Hao Wang
  • Hui Yan
Review
  • 19 Downloads

Abstract

In order to improve the performance of metal oxides as the supercapacitor electrodes, incorporating transition metal oxides and carbon materials homogeneously in one hybrid has become an effective method. For the purpose of getting NiO/carbon composites, Ni-MOFs were annealed at different temperatures (200 °C, 300 °C, and 400 °C) with a ramp rate of 1 °C min−1. As a result, NiO/graphite carbon nanocomposites were successfully obtained by one-step pyrolysis of Ni-MOFs at 300 °C in air. Large specific surface area and good conductivity made it exhibit excellent capacitance of 317 F g−1 at the current density of 1 A g−1 and excellent cycling stability.

Keywords

Supercapacitors Metal-organic frameworks Nanocomposites Conductivity Specific surface area 

Notes

Funding information

This work is supported by the Scientific and Technological Development Project of the Beijing Education Committee (No. KZ201710005009) and Key Laboratory of Advanced Functional Materials, Education Ministry of China.

References

  1. 1.
    Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. ChemInform 25(37):5336.  https://doi.org/10.1002/chin.201348249 CrossRefGoogle Scholar
  2. 2.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850.  https://doi.org/10.1002/adma.201100984 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Li B, Zheng M, Xue H, ChemInform Abstract PH (2016) High performance electrochemical capacitor materials focusing on nickel based materials. ChemInform 3(2):175–202.  https://doi.org/10.1002/chin.201614269 CrossRefGoogle Scholar
  4. 4.
    Zhu Z, Weimin DU, Guo W, Zhu W (2016) Research progress of preparation and application of transition metal ternary compounds in supercapacitors. Chin J Appl Chem 33(3).  https://doi.org/10.11944/j.issn.1000-0518.2016.03.150273
  5. 5.
    Chen A, Xia K, Zhang L, Yu Y, Li Y, Sun H, Wang Y, Li Y, Li S (2016) Fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules for supercapacitors. Langmuir 32(35):8934–8941.  https://doi.org/10.1021/acs.langmuir.6b02250 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Han D, Xu P, Jing X, Wang J, Yang P, Shen Q, Liu J, Song D, Gao Z, Zhang M (2013) Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J Power Sources 235(4):45–53.  https://doi.org/10.1016/j.jpowsour.2013.01.180 CrossRefGoogle Scholar
  7. 7.
    Liao Q, Li N, Jin S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9(5):5310–5317.  https://doi.org/10.1021/acsnano.5b00821 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 43(18):797–828.  https://doi.org/10.1039/c1cs15060j CrossRefGoogle Scholar
  9. 9.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730.  https://doi.org/10.1039/c4ee03229b CrossRefGoogle Scholar
  10. 10.
    González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58(2016):1189–1206.  https://doi.org/10.1016/j.rser.2015.12.249 CrossRefGoogle Scholar
  11. 11.
    Deng W, Ji X, Chen Q, Banks C (2011) Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv 1(7):1171–1178.  https://doi.org/10.1039/c1ra00664a CrossRefGoogle Scholar
  12. 12.
    Guan C, Xia X, Meng N, Zeng Z, Cao X, Soci C, Zhang H, Fan HJ (2012) Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy Environ Sci 5(10):9085–9090.  https://doi.org/10.1039/c2ee22815g CrossRefGoogle Scholar
  13. 13.
    Xia W, Mahmood A, Zou R, Xu Q (2015) Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866.  https://doi.org/10.1039/c5ee00762c CrossRefGoogle Scholar
  14. 14.
    Rack Ahn Y, Song MY, Jo SM, Park CR, Kim DY (2006) Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates. Nanotechnology 17(12):2865–2869.  https://doi.org/10.1088/0957-4484/17/12/007 CrossRefGoogle Scholar
  15. 15.
    Xia H, Hong C, Shi X, Li B, Yuan G, Yao Q, Xie J (2014) Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors. J Mater Chem A 3(3):1216–1221.  https://doi.org/10.1039/c4ta05568c CrossRefGoogle Scholar
  16. 16.
    Yang P, Song X, Jia C, Chen HS (2018) Metal-organic framework-derived hierarchical ZnO/NiO composites: morphology, microstructure and electrochemical performance. Journal of Industrial & Engineering Chemistry 62:250–257.  https://doi.org/10.1016/j.jiec.2018.01.002 CrossRefGoogle Scholar
  17. 17.
    Duraisamy N, Numan A, Fatin SO, Ramesh K, Ramesh S (2016) Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. Journal of Colloid & Interface Science 471:136–144.  https://doi.org/10.1016/j.jcis.2016.03.013 CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Wang J, Wei H, Hao J, Mu J, Cao P, Wang J, Zhao S (2016) Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application. Mater Lett 162:67–70.  https://doi.org/10.1016/j.matlet.2015.09.123 CrossRefGoogle Scholar
  19. 19.
    Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180.  https://doi.org/10.1002/adma.201202146 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu T, Jiang C, Cheng B, You W, Yu J (2017) Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. J Power Sources 359:371–378.  https://doi.org/10.1016/j.jpowsour.2017.05.100 CrossRefGoogle Scholar
  21. 21.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459.  https://doi.org/10.1039/b807080f CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xamena FXLI, Abad A, Corma A, Garcia H (2007) MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF. J Catal 250(2):294–298.  https://doi.org/10.1016/j.jcat.2007.06.004 CrossRefGoogle Scholar
  23. 23.
    Sumida K, Rogow DL, Mason JA, Mcdonald TM, Bloch ED, Herm ZR et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112(2):724–781.  https://doi.org/10.1016/j.ccr.2011.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li JR, Kuppler RJ, ChemInform Abstract ZHC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 40(29):1477–1504.  https://doi.org/10.1039/b802426j CrossRefGoogle Scholar
  25. 25.
    Liang Z, Qu C, Guo W, Zou R, Xu Q (2017) Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv Mater 30:1702891.  https://doi.org/10.1002/adma.201702891 CrossRefGoogle Scholar
  26. 26.
    Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1(1):14–19.  https://doi.org/10.1039/c2ta00278g CrossRefGoogle Scholar
  27. 27.
    Das R, Pachfule P, Banerjee R, Poddar P (2012) Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale 4(2):591–599.  https://doi.org/10.1039/c1nr10944h CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Maiti S, Pramanik A, Mahanty S (2016) Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal-organic framework. CrystEngComm 18(3):450–461.  https://doi.org/10.1039/c5ce01976a CrossRefGoogle Scholar
  29. 29.
    Li H, Yue F, Yang C, Qiu P, Xue P, Xu Q, Wang J (2016) Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes. Ceram Int 42(2):3121–3129.  https://doi.org/10.1016/j.ceramint.2015.10.101 CrossRefGoogle Scholar
  30. 30.
    Grant Glover T, Peterson GW, Schindler BJ, Britt D, Yaghi O (2011) MOF-74 building unit has a direct impact on toxic gas adsorption. Chem Eng Sci 66(2):163–170.  https://doi.org/10.1016/j.ces.2010.10.002 CrossRefGoogle Scholar
  31. 31.
    Chen S, Xue M, Li Y, Pan Y, Zhu L, Qiu S (2015) Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors. J Mater Chem A 3(40):20145–20152.  https://doi.org/10.1002/smll.201603102 CrossRefGoogle Scholar
  32. 32.
    Choi I, Jung YE, Yoo SJ, Kim JY, Kim H-J, Lee CY, Jang JH (2017) Facile synthesis of M-MOF-74 (M=Co, Ni, Zn) and its application as an electrocatalyst for electrochemical CO2 conversion and H2 production. Journal of Electrochemical Science and Technology 8(1):61–68.  https://doi.org/10.5229/jecst.2017.8.1.61 CrossRefGoogle Scholar
  33. 33.
    Wu C, Deng S, Wang H, Sun Y, Liu J, Yan H (2014) Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications. ACS Appl Mater Interfaces 6(2):1106–1112.  https://doi.org/10.1021/am404691w CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y (2011) Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J Mater Chem 21(46):18792.  https://doi.org/10.1039/c1jm13016a CrossRefGoogle Scholar
  35. 35.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758.  https://doi.org/10.1021/nl904286r CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cho H-Y, Yang D-A, Kim J, Jeong S-Y, Ahn W-S (2012) CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal Today 185(1):35–40.  https://doi.org/10.1016/j.cattod.2011.08.019 CrossRefGoogle Scholar
  37. 37.
    Zhu Y, Cao C (2015) A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim Acta 176:141–148.  https://doi.org/10.1016/j.electacta.2015.06.130 CrossRefGoogle Scholar
  38. 38.
    Yin D, Huang G, Sun Q, Li Q, Wang X, Yuan D, Wang C, Wang L (2016) RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim Acta 215:410–419.  https://doi.org/10.1016/j.electacta.2016.08.110 CrossRefGoogle Scholar
  39. 39.
    Xia W, Qu C, Liang Z, Zhao B, Dai S, Qiu B, Jiao Y, Zhang Q, Huang X, Guo W, Dang D, Zou R, Xia D, Xu Q, Liu M (2017) High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett 17(5):2788–2795.  https://doi.org/10.1021/acs.nanolett.6b05004 CrossRefPubMedGoogle Scholar
  40. 40.
    Wu MK, Chen C, Zhou JJ, Yi FY, Tao K, Han L (2018) MOF-derived hollow double-shelled NiO nanospheres for high–performance supercapacitors. J Alloys Compd 734:1–8.  https://doi.org/10.1016/j.jallcom.2017.10.171 CrossRefGoogle Scholar
  41. 41.
    Li GC, Liu PF, Liu R, Liu M, Tao K, Zhu SR, Wu MK, Yi FY, Han L (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans 45(34):13311–13316.  https://doi.org/10.1039/c6dt01791f CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim S, Lee JS, Ahn HJ, Song HK, Jang JH (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. Appl Mater Interfaces 5(5):1596–1603.  https://doi.org/10.1021/am3021894 CrossRefGoogle Scholar
  43. 43.
    Hu Q, Gu Z, Zheng X, Zhang X (2016) Three-dimensional Co3O4 @NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem Eng J 304:223–231.  https://doi.org/10.1016/j.cej.2016.06.097 CrossRefGoogle Scholar
  44. 44.
    Shanmugavani A, Selvan RK (2016) Microwave assisted reflux synthesis of NiCo2O4 /NiO composite: Fabrication of high performance asymmetric supercapacitor with Fe 2O3. Electrochim Acta 189:283–294.  https://doi.org/10.1016/j.electacta.2015.12.043 CrossRefGoogle Scholar
  45. 45.
    Purushothaman KK, Babu IM, Sethuraman B, Muralidharan G (2013) Nanosheet-assembled NiO microstructures for high-performance supercapacitors. ACS Appl Mater Interfaces 5(21):10767–10773.  https://doi.org/10.1021/am402869p CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sun Z, Hui L, Ran W, Lu Y, Jia D (2016) Facile synthesis of two-dimensional (2D) nanoporous NiO nanosheets from metal-organic frameworks with superior capacitive properties. New J Chem 40(2):1100–1103.  https://doi.org/10.1039/c5nj02261d CrossRefGoogle Scholar
  47. 47.
    Dai E, Xu J, Qiu J, Liu S, Chen P, Liu Y (2017) Co@carbon and Co3O4@carbon nanocomposites derived from a single MOF for supercapacitors. Sci Rep 7(1):12588.  https://doi.org/10.1038/s41598-017-12733-5 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88.  https://doi.org/10.1039/c2nr32040a CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24(30):4197–4202.  https://doi.org/10.1002/adma.201104942 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Han Y, Zhang S, Shen N, Li D, Li X (2017) MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors. Mater Lett 188:1–4.  https://doi.org/10.1016/j.matlet.2016.09.051 CrossRefGoogle Scholar
  51. 51.
    Deng S, Sun D, Wu C, Wang H, Liu J, Sun Y, Yan H (2013) Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications. Electrochim Acta 111:707–712.  https://doi.org/10.1016/j.electacta.2013.08.055 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The College of Materials Science and EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations