, Volume 25, Issue 3, pp 1271–1279 | Cite as

Influence of alkali substitution in La0.7Ca0.3Mn0.8Cr0.2O3 perovskite manganite on structural, magnetic, and transport properties

  • Narayan Dutt Sharma
  • Arun Mahajan
  • Mukesh Kumar Verma
  • Nisha Choudhary
  • Suman Sharma
  • Devinder SinghEmail author
Original Paper


In order to study the effect of A-site cation mismatch on the structural, magnetic, and transport properties, a systematic investigation of La0.7Ca0.25A0.05Mn0.8Cr0.2O3 (A = Ca, Li, Na, K) has been undertaken. The XRD data of the materials, prepared by glycine-nitrate combustion method, have been analyzed by Rietveld refinement technique. The iodometric and EDX results show that except K doped sample, the desired stoichiometry of all the phases remains the same. The phases display a paramagnetic to ferromagnetic transition at low temperature with Tc found to decrease with decreasing ˂rA˃. It has been concluded that the conduction mechanism was dominated by small polaron hopping model in the high temperature paramagnetic semiconducting region.


Combustion method Rietveld refinements Magnetic properties Transport properties 



Authors are thankful to University Grants Commission, New Delhi for financial support vide Ref. No. 20/12/2015 (11) EU-V (Sr. No. 21215101B1). Authors are also thankful to Director, Advanced Materials Research Centre, IIT Mandi, for recording XRD. Thanks are also due to Prof. Ramesh Chandra, Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, for recording EDX and SEM.


  1. 1.
    Ramirez AP (1997) Colossal magnetoresistance. J Phys Condens Matter 9(39):8171–8199CrossRefGoogle Scholar
  2. 2.
    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1–xSrxMnO3. Phys Rev B 51(20):14103–14109CrossRefGoogle Scholar
  3. 3.
    Von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K (1993) Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys Rev Lett 71(14):2331–2333CrossRefGoogle Scholar
  4. 4.
    Mahendiran R, Tiwary SK, Raychaudhuri AK, Ramakrishnan TV, Mahesh R, Rangavittal N, Rao CN (1996) Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems. Phys Rev B 53(6):3348–3358CrossRefGoogle Scholar
  5. 5.
    Mahendiran R, Mahesh R, Raychaudhuri AK, Rao CN (1996) Effect of Y substitution in La-Ca-Mn-O perovskites showing giant magnetoresistance. Phys Rev B 53(18):12160–12165CrossRefGoogle Scholar
  6. 6.
    Tietz F, Papadelis C, Tsiplakides D, Katsaounis A, Vayenas CG (2001) Temperature programmed oxygen desorption of the perovskites series Ln0.65Sr0.3Mn0.8Co0.2O3 (ln = La–Gd). Ionics 7(1–2):101–104CrossRefGoogle Scholar
  7. 7.
    Zhou Y, Lü Z, Wei B, Xu S, Xu D, Yang Z (2016) The comparative theoretical study of the LaBO3 (001) (B = Mn, Fe, Co, and Ni) surface properties and oxygen adsorption mechanisms. Ionics 22(7):1153–1158CrossRefGoogle Scholar
  8. 8.
    Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82(3):403–405CrossRefGoogle Scholar
  9. 9.
    Tokura Y, Tomioka Y (1999) Colossal magnetoresistive manganites. J Magn Magn Mater 200:1–23CrossRefGoogle Scholar
  10. 10.
    Terashita H, Cezar JC, Ardito FM, Bufaical LF, Granado E (2012) Element-specific and bulk magnetism, electronic, and crystal structures of La0.70Ca0.30Mn1−xCrxO3. Phys Rev B 85(10):104401CrossRefGoogle Scholar
  11. 11.
    Millis AJ, Littlewood PB, Shraiman BI (1995) Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys Rev Lett 74(25):5144–5147CrossRefGoogle Scholar
  12. 12.
    Ahmed AM, Papavassiliou G, Mohamed HF, Ibrahim EM (2015) Structural, magnetic and electronic properties on the Li-doped manganites. J Magn Magn Mater 392:27–41CrossRefGoogle Scholar
  13. 13.
    Liu Z, Lin WG, Zhou KW, Yan JL (2018) Effect of Cu doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.25Na0.05Mn1–xCuxO3 manganites. Ceram Int 44:2797–2802CrossRefGoogle Scholar
  14. 14.
    Mohamed HF (2017) Influence of sodium doping on the electrical and magnetic properties of La0.90Li0.10MnO3 manganites. J Magn Magn Mater 424:44–52CrossRefGoogle Scholar
  15. 15.
    Ji JT, Li Y, Zhao TS, Du YW (2010) The effect of Ru doping on the alkali-doped manganite Pr0.8Na0.2MnO3. J Magn Magn Mater 322:3857–3861CrossRefGoogle Scholar
  16. 16.
    Roy S, Guo YQ, Venkatesh S, Ali N (2001) Interplay of structure and transport properties of sodium-doped lanthanum manganite. J Phys Condens Matter 13(42):9547–9559CrossRefGoogle Scholar
  17. 17.
    Boudaya C, Laroussi L, Dhahri E, Joubert JC, Cheikh-Rouhou A (1998) Magnetic and magnetoresistance properties in rhombohedral perovskite-type compounds. J Phys Condens Matter 10:7485CrossRefGoogle Scholar
  18. 18.
    Abdelmoula N, Cheikh-Rouhou A, Reversat L (2001) Structural, magnetic and magnetoresistive properties of La0.7Sr0.3-xNaxMnO3 manganites. J Phys Condens Matter 13:449–458CrossRefGoogle Scholar
  19. 19.
    Patil KC, Aruna ST, Mimani T (2002) Combustion synthesis: an update. Curr Opin Solid St M 6(6):507–512CrossRefGoogle Scholar
  20. 20.
    Singh S, Singh D (2017) Synthesis of LaFeO3 nanopowders by glycine–nitrate process without using any solvent: effect of temperature. Monatsh Chem 148(5):879–886CrossRefGoogle Scholar
  21. 21.
    Singh D, Mahajan A (2015) Synthesis and characterization of Ruddlesden–Popper oxides Nd1+xSr2−xMnCrO7 (x = 0.0, 0.2 and 0.4). Ceram Int 41(10):15048–15056CrossRefGoogle Scholar
  22. 22.
    Karppinen M, Fukuoka A, Niinistö L, Yamauchi H (1996) Determination of oxygen content and metal valences in oxide superconductors by chemical methods. Supercond Sci Technol 9(3):121–136CrossRefGoogle Scholar
  23. 23.
    Larson AC, Dreele RBV (2004) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748Google Scholar
  24. 24.
    Lakshmi YK, Venkataiah G, Vithal M, Reddy PV (2008) Magnetic and electrical behavior of La1–xAxMnO3 (A = Li, Na, K and Rb) manganites. Phys B Condens Matter 403(18):3059–3066CrossRefGoogle Scholar
  25. 25.
    Yanapu KL, Samatham SS, Kumar D, Ganesan V, Reddy PV (2016) Effect of bismuth doping on the physical properties of La–Li–Mn–O manganite. Appl Phys A Mater Sci Process 122(3):199CrossRefGoogle Scholar
  26. 26.
    Shimura T, Hayashi T, Inaguma Y, Itoh M (1996) Magnetic and electrical properties of LayAxMnwO3 (A = Na, K, Rb, and Sr) with perovskite-type structure. J Solid State Chem 124:250–263CrossRefGoogle Scholar
  27. 27.
    Zhang X, Zhiqing LI (2011) Influence of Cr-doping on the magnetic and electrical transport properties of Nd0.75Na0.25MnO3. J Rare Earth 29(3):230–234CrossRefGoogle Scholar
  28. 28.
    Linh DC, Thanh TD, Piao HG, Yu SC (2017) Critical properties around the ferromagnetic-paramagnetic phase transition in La0.7Ca0.3–xAxMnO3 compounds (A = Sr, Ba and x = 0, 0.15, 0.3). J Alloys Compd 725:484–495CrossRefGoogle Scholar
  29. 29.
    Li SQ, Wu LQ, Ge XS, Li ZZ, Tang GD, Zhong W (2018) Unique magnetic properties of perovskite manganites La0.95T0.05CrxMn1−xO3 (T = Ca, Sr). J Magn Magn Mater 460:501–508CrossRefGoogle Scholar
  30. 30.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sec A 32(5):751–767CrossRefGoogle Scholar
  31. 31.
    Hwang HY, Cheong SW, Radaelli PG, Marezio M, Batlogg B (1995) Lattice effects on the magnetoresistance in doped LaMnO3. Phys Rev Lett 75(5):914–917CrossRefGoogle Scholar
  32. 32.
    Chmaissem O, Dabrowski B, Kolesnik S, Mais J, Jorgensen JD, Short S (2003) Structural and magnetic phase diagrams of La1−xSrxMnO3 and Pr1−ySryMnO3. Phys Rev B 67: 094431(1–13)Google Scholar
  33. 33.
    Kittel C (1986) Introduction to solid state physics, th. Wiley, New York, 6:404–406Google Scholar
  34. 34.
    Singh S, Singh D (2017) Structural, magnetic and electrical properties of Fe-doped perovskite manganites La0.8Ca0.15Na0.05Mn1–xFexO3 (x = 0, 0.05, 0.10 and 0.15). J Alloys Compd 702:249–257CrossRefGoogle Scholar
  35. 35.
    Singh D, Mahajan A (2013) Synthesis, magnetic and electric transport properties of mixed-valence manganites La0.5+xSr1.5–xMn0.5Cr0.5O4 (x = 0.1, 0.2 and 0.3). J Solid State Chem 207:126–131CrossRefGoogle Scholar
  36. 36.
    Babu PD, Daivajna MD (2018) Structural, electrical, magnetic and thermal properties of Pr0.8–xDyxSr0.2MnO3 with (x = 0, 0.2 and 0.25). J Alloys Compd 741:97–105CrossRefGoogle Scholar
  37. 37.
    Manjunatha SO, Rao A, Babu PD, Chand T, Okram GS (2016) Electric, magnetic, and thermo-electric properties of Cr doped La0.8Ca0.2Mn1–xCrxMnO3 manganites. Solid State Commun 239: 37–43Google Scholar
  38. 38.
    Bhattacharya S, Pal S, Banerjee A, Yang HD, Chaudhuri BK (2003) Magnetotransport properties of alkali metal doped La–Ca–Mn–O system under pulsed magnetic field: decrease of small polaron coupling constant and melting of polarons in the high temperature phase. J Chem Phys 119(7):3972–3982CrossRefGoogle Scholar
  39. 39.
    Malavasi L, Mozzati MC, Azzoni CB, Chiodelli G, Flor G (2002) Role of oxygen content on the transport and magnetic properties of La1–xCaxMnO3+δ manganites. Solid State Commun 123(8):321–326CrossRefGoogle Scholar
  40. 40.
    Bhattacharya S, Mukherjee RK, Chaudhuri BK, Yang HD (2003) Effect of Li doping on the magnetotransport properties of La0.7Ca0.3–yLiyMnO3 system: decrease of metal–insulator transition temperature. Appl Phys Lett 82(23):4101–4103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Narayan Dutt Sharma
    • 1
  • Arun Mahajan
    • 1
  • Mukesh Kumar Verma
    • 1
  • Nisha Choudhary
    • 1
  • Suman Sharma
    • 1
  • Devinder Singh
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of JammuJammuIndia

Personalised recommendations