Advertisement

Ionics

, Volume 25, Issue 2, pp 533–540 | Cite as

RGO-modified CoWO4 nanoparticles as new high-performance electrode materials for sodium-ion storage

  • Hui Zhang
  • Rui-Juan Bai
  • Chun Lu
  • Jun Li
  • Ying-Ge Xu
  • Ling-Bin Kong
  • Mao-Cheng LiuEmail author
Original Paper
  • 38 Downloads

Abstract

In this work, the RGO-modified CoWO4 nanoparticles are synthesized by a feasible hydrothermal approach and studied as the high-performance sodium-ion storage materials. RGO can effectively improve overall electrical conductivity and maintain the stability of the composite structure. The composites exhibit a stabilized reversible capacity of 160 mAh g−1 at the current density of 100 mA g−1 after 100 cycles when tested as the anode materials of sodium-ion batteries (SIBs). The sodium-ion capacitors (SICs) were assembled using CoWO4/RGO nanocomposites as the negative electrode materials and the active carbon (AC) as the positive electrode materials. It could deliver a capacitance about 31 F g−1 at the current density of 100 mA g−1 and display a specific energy of 87.2 Wh kg−1 at the power density of 224.6 W kg−1. The outstanding electrochemical properties and high energy density of CoWO4/RGO anode materials indicate the huge potential for its application to sodium-ion storage devices.

Keywords

Sodium-ion storage CoWO4/RGO nanocomposites Sodium-ion batteries Sodium-ion capacitors 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (No. 21403099), the Natural Science Funds for Distinguished Young Scholars of Gansu Province (No. 1606RJDA320), and the Natural Science Foundation of Hainan Province (No. 517301).

Supplementary material

11581_2018_2791_MOESM1_ESM.doc (9.4 mb)
ESM 1 (DOC 9595 kb)

References

  1. 1.
    Wei H, Wang JQ, Gong PW, Sun JF, Niu LY, Yang ZG, Wang ZF, Yang SR (2014) Rational construction of three dimensional hybrid Co3O4@NiMoO4, nanosheets array for energy storage application. J Power Sources 3:516–525Google Scholar
  2. 2.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  3. 3.
    Chen HC, Chen S, Fan MQ, Li C, Chen D, Tian GL, Shu KY (2015) Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J Mater Chem A 3(47):23653–23659CrossRefGoogle Scholar
  4. 4.
    Dong YC, Ma RJ, Hu MJ, Cheng H, Lee JM, Li YY, Zapien JA (2014) Polymer-pyrolysis assisted synthesis of vanadium trioxide and carbon nanocomposites as high performance anode materials for lithium-ion batteries. J Power Sources 261:184–187CrossRefGoogle Scholar
  5. 5.
    Poizot P, Dolhem F, Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4:2003CrossRefGoogle Scholar
  6. 6.
    Xia XH, Chao DL, Zhang YQ, Shen ZX, Fan HJ (2014) Three-dimensional graphene and their integrated electrodes. Nano Today 9:785–807CrossRefGoogle Scholar
  7. 7.
    Cui G, Gu L, Zhi L, Kaskhedikar N, Aken PAV, Müllen K (2010) A germanium-carbon nanocomposite material for lithium batteries. Adv Mater 20:3079–3083CrossRefGoogle Scholar
  8. 8.
    Hu F, Jiang W, Dong Y, Lai X, Xiao L, Wu X (2017) Synthesis and electrochemical performance of NaV6O15 microflowers for lithium and sodium ion batteries. RSC Adv 7:29481–29488CrossRefGoogle Scholar
  9. 9.
    Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRefGoogle Scholar
  10. 10.
    Massé RC, Uchaker E, Cao G (2015) Beyond li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater 58:715–766CrossRefGoogle Scholar
  11. 11.
    Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang CS (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033–4042CrossRefGoogle Scholar
  12. 12.
    Ellis BL, Makahnouk WR, Makimura Y, Toghill K, Nazar LFA (2007) Multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753CrossRefGoogle Scholar
  13. 13.
    Xu MW, Wang L, Zhao X, Song J, Xie H, Lu YH, Goodenough JB (2013) Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium-ion battery. Phys Chem Chem Phys 15(31):13032–13037CrossRefGoogle Scholar
  14. 14.
    Kim D, Kang SH, Slater M, Rood S, Vaughey JT, Karan N, Balasubramanian M, Johnson CS (2011) Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 1:333–336CrossRefGoogle Scholar
  15. 15.
    Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu J (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160CrossRefGoogle Scholar
  16. 16.
    Yuan CZ, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 45:1488–1504CrossRefGoogle Scholar
  17. 17.
    Gong C, Bai YJ, Feng J, Tang R, Qi YX, Lun N, Fan RH (2013) Enhanced electrochemical performance of FeWO4 by coating nitrogen-doped carbon. ACS Appl Mater Interfaces 5:4209–4215CrossRefGoogle Scholar
  18. 18.
    Shim HW, Lim AH, Kim JC, Lee GH, Kim DW (2013) Hydrothermal realization of a hierarchical, flowerlike MnWO4@MWCNTs nanocomposite with enhanced reversible Li storage as a new anode material. Chem Asian J 8:2851–2858CrossRefGoogle Scholar
  19. 19.
    Zhang E, Xing Z, Wang J, Ju ZC, Qian YT (2012) Enhanced energy storage and rate performance induced by dense nanocavities inside MnWO4 nanobars. RSC Adv 2:6748–6751CrossRefGoogle Scholar
  20. 20.
    Zhang LS, Wang ZT, Wang LZ, Xing Y, Li XF, Zhang Y (2014) Electrochemical performance of ZnWO4/CNTs composite as anode materials for lithium-ion battery. J Mater Sci 305:179–185Google Scholar
  21. 21.
    Wang XX, Li Y, Liu MC, Kong LB (2017) Fabrication and electrochemical investigation of MWO4, (M = Co, Ni) nanoparticles as high-performance anode materials for lithium-ion batteries. Ionics 24:1–10Google Scholar
  22. 22.
    Yu P, Wang L, Liu X, Fu HG, Yu HT (2017) CoWO4 nanopaticles wrapped by RGO as high capacity anode material for lithium ion batteries. Rare Metals 36:411–417CrossRefGoogle Scholar
  23. 23.
    Srirapu VKVP, Kumar A, Srivastava P, Singh RN, Sinha ASK (2016) Nanosized CoWO4 and NiWO4 as efficient oxygen evolving electrocatalysts. Electrochim Acta 209:75–84CrossRefGoogle Scholar
  24. 24.
    Kumari N, Singh RN (2016) Nanocomposites of nitrogen-doped graphene and cobalt tungsten oxide as efficient electrode materials for application in electrochemical devices. AIMS Mater Sci 3:1456–1473CrossRefGoogle Scholar
  25. 25.
    Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K (2012) WO3 hollow nanospheres for high-lithium storage capacity and good cyclability. Nano Energy 1:503–508CrossRefGoogle Scholar
  26. 26.
    Tong H, Xu YM, Cheng XL, Zhang XF, Gao S, Zhao H, Huo LH (2016) One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance. Electrochim Acta 210:147–154CrossRefGoogle Scholar
  27. 27.
    Kang Q, Cao LY, Li JY, Huang JF, Xu ZW, Cheng YY, Wang X, Bai JY, Li QY (2016) Super P enhanced CoO anode for lithium-ion battery with superior electrochemical performance. Ceram Int 42:15920–15925CrossRefGoogle Scholar
  28. 28.
    Huang GY, Xu SM, Yang Y, Chen YB, Li ZB (2015) Rapid-rate capability of micro-/nano-structured CoO anodes with different morphologies for Lithium-ion batteries. Int J Electrochem Sci 10:10587–10596Google Scholar
  29. 29.
    Shen XY, Mu DB, Chen S, Wu BR, Wu F (2013) Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5(8):3118–3125CrossRefGoogle Scholar
  30. 30.
    Huang G, Xu S, Lu S, Li L, Sun H (2014) Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl Mater Interfaces 6:7236–7243CrossRefGoogle Scholar
  31. 31.
    He CN, Wu SH, Zhao NQ, Shi CS, Liu EZ, Li JJ (2013) Carbon encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7(5):4459–4469CrossRefGoogle Scholar
  32. 32.
    Zhu YE, Yang LP, Sheng J, Chen YN, Gu HC, Wei JP, Zhou Z (2017) Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv Energy Mater 7:1701222–1701230CrossRefGoogle Scholar
  33. 33.
    Kim H, Cho M, Kim M, Park K, Gwon H, Lee Y (2013) A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater 3:1500–1506CrossRefGoogle Scholar
  34. 34.
    Chen SM, Yang G, Jia Y, Zheng HJ (2017) Three-dimensional NiCo2O4@NiWO4 core-shell nanowire arrays for high performance supercapacitors. J Mater Chem A 5:1028–1034CrossRefGoogle Scholar
  35. 35.
    Chen SM, Yang G, Zheng HJ (2016) Aligned Ni-Co-Mn oxide nanosheets grown on conductive substrates as binder-free electrodes for high capacity electrochemical energy storage devices. Electrochim Acta 220:296–303CrossRefGoogle Scholar
  36. 36.
    Tao X, Du J, Sun Y, Zhou S, Xia Y, Huang H, Gan Y, Zhang W, Li X (2013) Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv Funct Mater 23:4745–4751Google Scholar
  37. 37.
    Kim MS, Lim E, Kim S, Jo C, Chun J, Le J (2017) General synthesis of N-doped macroporous graphene-encapsulated mesoporous metal oxides and their application as new anode materials for sodium-ion hybrid supercapacitors. Adv Funct Mater 27:1603921–1603929CrossRefGoogle Scholar
  38. 38.
    Chen Z, Augustyn V, Jia XL, Xiao QF, Dunn B, Lu YF (2012) High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6:4319–4327CrossRefGoogle Scholar
  39. 39.
    Jung HG, Venugopal N, Scrosati B (2013) A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12, electrode. J Power Sources 221:266–271CrossRefGoogle Scholar
  40. 40.
    Le ZY, Liu F, Nie P, Li XR, Liu XY, Bian ZF, Chen G, Wu HB, Lu YF (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11:2952–2960CrossRefGoogle Scholar
  41. 41.
    Dong S, Shen LF, Li HS, Pang G, Dou H, Zhang XG (2016) Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv Funct Mater 26(21):3703–3710CrossRefGoogle Scholar
  42. 42.
    Lim E, Jo C, Kim MS, Kim MH, Chun J, Kim H, Park J, Roh KC, Kang K, Yoon S, Lee J (2016) High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon Core-Shell nanoparticles and reduced graphene oxide nanocomposites. Adv Funct Mater 26:3711–3719CrossRefGoogle Scholar
  43. 43.
    Aravindan V, Chuiling W, Madhavi S (2012) High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J Mater Chem 22:16026–16031CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui Zhang
    • 1
  • Rui-Juan Bai
    • 2
  • Chun Lu
    • 1
  • Jun Li
    • 1
  • Ying-Ge Xu
    • 1
  • Ling-Bin Kong
    • 1
    • 3
  • Mao-Cheng Liu
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.Sanya Technology Institute for Quality and Technical Supervision of Hainan ProvinceSanyaPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations