, Volume 25, Issue 3, pp 1157–1165 | Cite as

Preparation and electrical conductivity of BaZr0.8Y0.2O3-δ/(ZrO2)0.92(Y2O3)0.08 proton/oxygen ion conducting composite ceramic

  • X. Y. Luo
  • B. MengEmail author
  • M. Y. Zhao
  • H. Xie
  • L. F. Bian
  • X. Yang
Original Paper


To improve the sintering performance of doped barium zirconate, (ZrO2)0.92(Y2O3)0.08 (YSZ) was added and BaZr0.8Y0.2O3-δ (BZY)-x%YSZ (x = 20, 30 and 50% by weight) composite ceramics were prepared by mechanical ball milling combined with high-temperature sintering in air. The crystalline structure, chemical composition, microstructure and electrical properties of the composite electrolytes were characterized by XRD, SEM, TEM, EDS and EIS, respectively. The composite electrolytes only consist of BZY and YSZ phases, and there are no precipitates in BZY/YSZ grain boundaries according to the HR-TEM analysis. YSZ addition can improve the sintering properties of the composite electrolytes. When the composite ceramics with YSZ content of 50 wt% are sintered at 1450 °C for 6 h, the relative density and linear shrinkage are optimal. At 700 °C, the electrical conductivity of BZY-50%YSZ ceramic reaches 1.95 × 10−4 S/cm and 1.67 × 10−4 S/cm in the dry air and moist air, respectively.


BaZr0.8Y0.2O3-δ/(ZrO2)0.92(Y2O3)0.08 composite electrolyte Proton/oxygen ion conductor Electrical conductivity Sintering performance 


Funding information

This study was financially supported by the National Natural Science Foundation of China (51462018), the Academic Team Research Project on Membrane & Electrode Materials of Advanced Batteries in Kunming University of Science and Technology (No. 14078311), the Undergraduate Training Programs for Innovation and Entrepreneurship of Yunnan Province (No. 201710674203) and the Testing Fund of Kunming University of Science and Technology (No. 2017M20162130037).


  1. 1.
    Schober T, Bohn HG (2000) Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y01O295. Solid State Ionics 127(3–4):351–360Google Scholar
  2. 2.
    Babilo P, Uda T, Haile SM (2007) Processing of yttrium-doped barium zirconate for high proton conductivity. J Mater Res 22(5):1322–1330Google Scholar
  3. 3.
    Imashuku S, Uda T, Awakura Y (2007) Sintering properties of trivalent cation-doped barium zirconate at 1600 °C. Electrochem Solid-State Lett 10(10):B175–B178Google Scholar
  4. 4.
    Bradha M, Ashok A (2015) Review on nanoperovskites: materials, synthesis, and applications for proton and oxide ion conductivity. Ionics 21(3):601–610Google Scholar
  5. 5.
    de Souza ECC, Muccillo R (2010) Properties and applications of perovskite proton conductors. Mater Res 13(3):385–394Google Scholar
  6. 6.
    Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega JC, Grey CP, Haile SM (2013) Proton trapping in yttrium-doped barium zirconate. Nat Mater 12(7):647–651Google Scholar
  7. 7.
    Kreuer KD (1999) Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125(1–4):285–302Google Scholar
  8. 8.
    Babilo P, Haile SM (2005) Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J Am Ceram Soc 88(9):2362–2368Google Scholar
  9. 9.
    Tong J, Clark D, Hoban M, O’Hayre R (2010) Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics 181(11–12):496–503Google Scholar
  10. 10.
    Iguchi F, Yamada T, Sata N, Tsurui T, Yugami H (2006) The influence of grain structures on the electrical conductivity of a BaZr0.95Y005O3 proton conductor. Solid State Ionics 177(26–32):2381–2384Google Scholar
  11. 11.
    Fabbri E, D Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Tailoring the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179(15–16):558–564Google Scholar
  12. 12.
    Bi L, Daas EH, Shafi SP (2017) Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte. Electrochem Commun 80:20–23Google Scholar
  13. 13.
    Gilardi E, Fabbri E, Bi L, Rupp JL, Lippert T, Pergolesi D, Traversa E (2017) Effect of dopant-host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity. J Phys Chem C 121(18):9739–9747Google Scholar
  14. 14.
    Wang J, Liu H, Peng K (2015) Effects of solid-state reaction on electrical chemical properties of Gd-doped CeO2 electrolyte and Y-doped BaCeO3 electrolyte. J Chin Ceram Soc 43(2):189–194Google Scholar
  15. 15.
    Zhu B, Liu X, Schober T (2004) Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications. Electrochem Commun 6(4):378–383Google Scholar
  16. 16.
    Liu T, Zhang X, Wang X, Yu J, Li L (2016) A review of zirconia-based solid electrolytes. Ionics 22(12):2249–2262Google Scholar
  17. 17.
    Zhang L, Li X, Wang S, Romito KG, Huang K (2011) High conductivity mixed oxide-ion and carbonate-ion conductors supported by a prefabricated porous solid-oxide matrix. Electrochem Commun 13(6):554–557Google Scholar
  18. 18.
    Shimada H, Takami E, Takizawa K, Hagiwara A, Ihara M (2011) Highly dispersed anodes for solid oxide fuel cells using NiO/YSZ/BZY triple-phase composite powders prepared by spray pyrolysis. Solid State Ionics 193(1):43–51Google Scholar
  19. 19.
    Onishi T, Han D, Noda Y, Hatada N, Majima M, Uda T (2018) Evaluation of performance and durability of Ni-BZY cermet electrodes with BZY electrolyte. Solid State Ionics 317:127–135Google Scholar
  20. 20.
    Yang QQ, Meng B, Lin ZL, Zhu XK, Yang F, Wu S (2017) Effect of sintering temperature on the elemental diffusion and electrical conductivity of SrTiO3/YSZ composite ceramic. Ionics 23(4):967–975Google Scholar
  21. 21.
    Guo X, Ding Y (2004) Grain boundary space charge effect in zirconia experimental evidence. J Electrochem Soc 151(1):J1–J7Google Scholar
  22. 22.
    Liu Y, Guo Y, Ran R, Shao Z (2012) A new neodymium-doped BaZr0.8Y0.2O3−δ as potential electrolyte for proton-conducting solid oxide fuel cells. J Membr Sci 415:391–398Google Scholar
  23. 23.
    Magrez A, Schober T (2004) Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3−δ: comparison between three different synthesis techniques. Solid State Ionics 175(1):585–588Google Scholar
  24. 24.
    Van Dijk T, Burggraaf AJ (1981) Grain boundary effects on ionic conductivity in ceramic GdxZr1–xO2–(x/2) solid solutions. Phys Status Solidi A 63(1):229–240Google Scholar
  25. 25.
    Irvine JT, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138Google Scholar
  26. 26.
    Potter AR, Baker RT (2006) Impedance studies on Pt|SrCe0. 95Yb0. 05O3|Pt under dried and humidified air, argon and hydrogen. Solid State Ionics 177(19–25):1917–1924Google Scholar
  27. 27.
    Sun W, Yan L, Shi Z, Zhu Z, Liu W (2010) Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3−δ electrolyte membrane. J Power Sources 195(15):4727–4730Google Scholar
  28. 28.
    Bi L, Fabbri E, Sun Z, Traversa E (2011) Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3−δ electrolyte films for anode-supported solid oxide fuel cells. Energy Environ Sci 4(4):1352–1357Google Scholar
  29. 29.
    Bae H, Choi J, Kim KJ, Park D, Choi GM (2015) Low-temperature fabrication of protonic ceramic fuel cells with BaZr0.8Y0.2O3−δ electrolytes coated by aerosol deposition method. Int J Hydrog Energy 40(6):2775–2784Google Scholar
  30. 30.
    Bae H, Choi GM (2015) Novel modification of anode microstructure for proton-conducting solid oxide fuel cells with BaZr0.8Y0.2O3−δ electrolytes. J Power Sources 285:431–438Google Scholar
  31. 31.
    Tao S, Irvine JT (2007) Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 °C. J Solid State Chem 180(12):3493–3503Google Scholar
  32. 32.
    Han M, Tang X, Yin H, Peng S (2007) Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J Power Sources 165(2):757–763Google Scholar
  33. 33.
    Gao H, Liu J, Chen H, Li S, He T, Ji Y, Zhang J (2008) The effect of Fe doping on the properties of SOFC electrolyte YSZ. Solid State Ionics 179(27–32):1620–1624Google Scholar
  34. 34.
    Yang CCT, Wei WCJ, Roosen A (2003) Electrical conductivity and microstructures of La0.65Sr0.3MnO3–8mol% yttria-stabilized zirconia. Mater Chem Phys 81(1):134–142Google Scholar
  35. 35.
    Hattori M, Takeda Y, Sakaki Y, Nakanishi A, Ohara S, Mukai K, Lee JH, Fukui T (2004) Effect of aging on conductivity of yttria stabilized zirconia. J Power Sources 126(1–2):23–27Google Scholar
  36. 36.
    Braun A, Duval S, Ried P, Embs J, Juranyi F, Strässle T, Stimming U, Hempelmann R, Holtappels P, Graule T (2009) Proton diffusivity in the BaZr0.9Y0.1O3−δ proton conductor. J Appl Electrochem 39(4):471–475Google Scholar
  37. 37.
    Elm MT, Hofmann JD, Suchomski C, Janek J, Brezesinski T (2015) Ionic conductivity of mesostructured Yttria-stabilized zirconia thin films with cubic pore symmetry-on the influence of water on the surface oxygen ion transport. ACS Appl Mater Interfaces 7(22):11792–11801Google Scholar
  38. 38.
    Park CO, Fergus JW, Miura N, Park J, Choi A (2009) Solid-state electrochemical gas sensors. Ionics 15(3):261–284Google Scholar
  39. 39.
    Baek SS, Park KY, Lee TH, Lee N, Seo Y, Song SJ, Park JY (2014) PdO-doped BaZr0.8Y0.2O3−δ electrolyte for intermediate-temperature protonic ceramic fuel cells. Acta Mater 66:273–283Google Scholar
  40. 40.
    Ahamer C, Opitz AK, Rupp GM, Fleig J (2017) Revisiting the temperature dependent ionic conductivity of yttria stabilized zirconia (YSZ). J Electrochem Soc 164(7):F790–F803Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • X. Y. Luo
    • 1
  • B. Meng
    • 1
    Email author
  • M. Y. Zhao
    • 1
  • H. Xie
    • 1
  • L. F. Bian
    • 1
  • X. Yang
    • 1
  1. 1.Faculty of Materials Science & EngineeringKunming University of Science & TechnologyKunmingPeople’s Republic of China

Personalised recommendations