Advertisement

Ionics

, Volume 25, Issue 3, pp 1117–1122 | Cite as

N-doped mesoporous-carbon polyhedron as an effective sulfur host for lithium–sulfur batteries

  • Linsen ZhangEmail author
  • Shanshan Zhu
  • Xiaofeng Li
  • Hua Fang
  • Aiqing Zhang
  • Haili Gao
  • Yanhua Song
Original Paper
  • 89 Downloads

Abstract

An effective sulfur host material of N-doped mesoporous-carbon polyhedron (NMCP) was derived from zeolitic imidazolate framework-8. We prepared an NMCP/S composite by sublimating sulfur into NMCP. As a Li–S battery cathode, the NMCP/S composite delivers a high initial capacity of 1308 mAh·g−1 at 50 mA·g−1, a stable reversible capacity of 496.3 mAh·g−1 after 150 cycles at 400 mA·g−1, and an excellent rate capacity of 639 mAh·g−1 at 800 mA·g−1. The excellent electrochemical performance is ascribed to the unique 3D carbon matrix. The mesoporous-carbon polyhedron structure ensures fast electron/ion diffusion and provides large free space for volumetric expansion of sulfur during repeated charge/discharge. Furthermore, nitrogen doping enhances conductivity and interaction between carbon host and polysulfide guest via chemical binding, which can suppress the shuttle of polysulfides to a certain extent.

Keywords

Li–S batteries Nitrogen-doped Mesoporous-carbon polyhedron Sulfur host 

Notes

Funding information

This work is supported by the foundation of Henan Provincial Natural Science Foundation (No. 162300410315), foundation for young teachers of 2012 Henan Province colleges and universities (GGJS-116), foundation of Zhengzhou science and technology (No. 20150441), and scientific research foundation of Zhengzhou University of Light Industry in 2015 (No.2015XJJZ036).

References

  1. 1.
    Cai D, Wang C, Shi C, Tan N (2018) Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries. J Alloys Compd 731:235–242CrossRefGoogle Scholar
  2. 2.
    Cui Y, Zhang Q, Wu J, Liang X, Baker AP, Qu D, Zhang H, Zhang H, Zhang X (2018) Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries. J Power Sources 378:40–47CrossRefGoogle Scholar
  3. 3.
    Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308CrossRefGoogle Scholar
  4. 4.
    Zhong Y, Chao D, Deng S, Zhan J, Fang R, Xia Y, Wang Y, Wang X, Xia X, Tu J (2018) Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv Funct Mater 28:1706391CrossRefGoogle Scholar
  5. 5.
    Zhang H, Zhao W, Zou M, Wang Y, Chen Y, Xu L, Wu H, Cao A (2018) 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv Energy Mater 8:1800013CrossRefGoogle Scholar
  6. 6.
    Deng N, Wang Y, Yan J, Ju J, Li Z, Fan L, Zhao H, Kang W, Cheng B (2017) A F-doped tree-like nanofiber structural poly-m-phenyleneisophthalamide separator for high-performance lithium-sulfur batteries. J Power Sources 362:243–249CrossRefGoogle Scholar
  7. 7.
    Guo Y, Wu H, Zhang Y, Xiang M, Zhao G, Liu H, Zhang Y (2017) Vesicle-like sulfur/reduced graphene oxide composites for high performance lithium-sulfur batteries. Journal of Alloys & Compounds 724:1007–1013CrossRefGoogle Scholar
  8. 8.
    Zhao X, Kim M, Liu Y, Ahn H-J, Kim K-W, Cho K-K, Ahn J-H (2018) Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries. Carbon 128:138–146CrossRefGoogle Scholar
  9. 9.
    Zhou J, Qian T, Xu N, Wang M, Ni X, Liu X, Shen X, Yan C (2017) Selenium-doped cathodes for lithium-organosulfur batteries with greatly improved volumetric capacity and coulombic efficiency. Adv Mater 29:1701294CrossRefGoogle Scholar
  10. 10.
    Liu M, Liu Y, Yan Y, Wang F, Liu J, Liu T (2017) A highly conductive carbon–sulfur film with interconnected mesopores as an advanced cathode for lithium–sulfur batteries. Chem Commun 53:9097–9100CrossRefGoogle Scholar
  11. 11.
    Xiang M, Yang L, Zheng Y, Huang J, Jing P, Wu H, Zhang Y, Liu H (2017) A freestanding and flexible nitrogen-doped carbon foam/sulfur cathode composited with reduced graphene oxide for high sulfur loading lithium–sulfur batteries. J Mater Chem A 5:18020–18028CrossRefGoogle Scholar
  12. 12.
    Xu J, Lawson T, Fan H, Su D, Wang G (2018) Updated metal compounds (MOFs, –S, –OH, –N, –C) used as cathode materials for lithium-sulfur batteries. Adv Energy Mater 8:1702607CrossRefGoogle Scholar
  13. 13.
    Yun JH, Kim JH, Kim DK, Lee HW (2018) Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium–sulfur batteries. Nano Lett 18:475–481CrossRefGoogle Scholar
  14. 14.
    Zhang C, Zhang Z, Wang D, Yin F, Zhang Y (2017) Three-dimensionally ordered macro-/mesoporous carbon loading sulfur as high-performance cathodes for lithium/sulfur batteries. J Alloys Comp 714:126–132CrossRefGoogle Scholar
  15. 15.
    Zhou G, Zhao Y, Manthiram A (2015) Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv Energy Mater 5:1402263CrossRefGoogle Scholar
  16. 16.
    Li N, Zheng M, Lu H, Hu Z, Shen C, Chang X, Ji G, Cao J, Shi Y (2012) High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem Commun 48:4106–4108CrossRefGoogle Scholar
  17. 17.
    Pei F, An T, Zang J, Zhao X, Fang X, Zheng M, Dong Q, Zheng N (2016) From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv Energy Mater 6:1502539CrossRefGoogle Scholar
  18. 18.
    Tan Y, Jia Z, Lou P, Cui Z, Guo X (2017) Self-assembly sandwiches of reduced graphene oxide layers with zeolitic-imidazolate-frameworks-derived mesoporous carbons as polysulfides reservoirs for lithium-sulfur batteries. J Power Sources 341:68–74CrossRefGoogle Scholar
  19. 19.
    Tan Y, Zheng Z, Huang S, Wang Y, Cui Z, Liu J, Guo X (2017) Immobilization of sulfur by constructing three-dimensional nitrogen rich carbons for long life lithium–sulfur batteries. J Mater Chem A 5:8360–8366CrossRefGoogle Scholar
  20. 20.
    Hu C, Kirk C, Cai Q, Cuadrado-Collados C, Silvestre-Albero J, Rodríguez-Reinoso F, Biggs MJ (2017) A High-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium-sulfur batteries. Adv Energy Mater 7:1701082CrossRefGoogle Scholar
  21. 21.
    Kaneti YV, Zhang J, He Y-B, Wang Z, Tanaka S, Hossain MSA, Pan Z-Z, Xiang B, Yang Q-H, Yamauchi Y (2017) Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J Mater Chem A 5:15356–15366CrossRefGoogle Scholar
  22. 22.
    Hencz L, Gu X, Zhou X, Martens W, Zhang S (2017) Highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries. J Mater Sci 52:12336–12347CrossRefGoogle Scholar
  23. 23.
    Chen M, Jiang S, Huang C, Wang X, Cai S, Xiang K, Zhang Y, Xue J (2017) Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries. ChemSusChem 10:1803–1812CrossRefGoogle Scholar
  24. 24.
    Lou XD, Zhang J, Li Z, Chen Y, Gao S (2018) Angew Chem Int Ed 57:10944–10948CrossRefGoogle Scholar
  25. 25.
    He J, Luo L, Chen Y, Manthiram A (2017) Yolk-shelled C@Fe3O4nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv Mater 29:1702707CrossRefGoogle Scholar
  26. 26.
    Butler KT, Worrall SD, Molloy CD, Hendon CH, Attfield MP, Dryfe RAW, Walsh A (2017) Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks. J Mater Chem C 5:7726–7731CrossRefGoogle Scholar
  27. 27.
    Cai S, Wang X, Chen M, Liu J, Lu Q, Wei S (2016) Preparation and performance of metal-organic-frameworks-derived activated mesoporous carbon polyhedron with sponge-like structure for lithium–sulfur batteries. J Electrochem Soc 163:A2922–A2929CrossRefGoogle Scholar
  28. 28.
    Guan BY, Yu XY, Wu HB, Lou X (2017) Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv Mater 29:1703614CrossRefGoogle Scholar
  29. 29.
    Liu SK, Hong XB, Li YJ, Xu J, Zheng CM, Xie K (2017) A nanoporous nitrogen-doped graphene for high performance lithium sulfur batteries. Chin Chem Lett 28:412–416CrossRefGoogle Scholar
  30. 30.
    Liu Y, Li G, Fu J, Chen Z, Peng X (2017) Angew Chem 129:6176–6180CrossRefGoogle Scholar
  31. 31.
    Shanthi PM, Hanumantha PJ, Gattu B, Sweeney M, Datta MK, Kumta PN (2017) Understanding the origin of irreversible capacity loss in non-carbonized carbonate − based metal organic framework (MOF) sulfur hosts for lithium − sulfur battery. Electrochim Acta 229:208–218CrossRefGoogle Scholar
  32. 32.
    Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580CrossRefGoogle Scholar
  33. 33.
    Wu HB, Wei S, Zhang L, Xu R, Hng HH, Lou XW (2013) Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chemistry 19:10804–10808CrossRefGoogle Scholar
  34. 34.
    Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1605820CrossRefGoogle Scholar
  35. 35.
    Shi X, Chen Y, Lai Y, Zhang K, Li J, Zhang Z (2017) Metal organic frameworks templated sulfur-doped mesoporous carbons as anode materials for advanced sodium ion batteries. Carbon 123:250–258CrossRefGoogle Scholar
  36. 36.
    Liu Y, Li G, Chen Z, Peng X (2017) CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li–S battery. J Mater Chem A 5:9775–9784CrossRefGoogle Scholar
  37. 37.
    Kaiser MR, Ma Z, Wang X, Han F, Gao T, Fan X, Wang JZ, Liu HK, Dou S, Wang C (2017) Reverse microemulsion synthesis of sulfur/graphene composite for lithium/sulfur batteries. ACS Nano 11:9048–9056CrossRefGoogle Scholar
  38. 38.
    Chen K, Cao J, Lu Q, Wang Q, Yao M, Han M, Niu Z, Chen J (2017) Nano Res 11:1345–1357CrossRefGoogle Scholar
  39. 39.
    Zhang X, Xie D, Wang D, Yang T, Wang X, Xia X, Gu C, Tu J (2016) J Solid State Electrochem 21:1203–1210CrossRefGoogle Scholar
  40. 40.
    Du X, Zhang X, Guo J, Zhao S, Zhang F (2017) Hierarchical sulfur confinement by graphene oxide wrapped, walnut-like carbon spheres for cathode of Li-S battery. J Alloys Compd 714:311–317CrossRefGoogle Scholar
  41. 41.
    Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew Chem Int Ed 51:9592–9595CrossRefGoogle Scholar
  42. 42.
    Li B, Xiao Q, Luo Y (2017) A polymer enhanced sulfur/graphene aerogel as a no-slurry cathode for lithium–sulfur batteries. RSC Adv 7:54453–54459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Linsen Zhang
    • 1
    Email author
  • Shanshan Zhu
    • 1
  • Xiaofeng Li
    • 1
  • Hua Fang
    • 1
  • Aiqing Zhang
    • 1
  • Haili Gao
    • 1
  • Yanhua Song
    • 1
  1. 1.Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical EngineeringZhengzhouUniversity of Light IndustryZhengzhouChina

Personalised recommendations