Advertisement

Ionics

, Volume 25, Issue 1, pp 361–365 | Cite as

A facile approach for the fabrication of loading-controlled Ag/C foam catalyst

  • Anmin Liu
  • Xuefeng Ren
  • Yilin Yao
  • Qiyue Yang
  • Mengfan Gao
  • Yanan Yang
  • Jing Guo
  • Yanqiang Li
  • Liguo Gao
  • Tingli Ma
Short Communication
  • 53 Downloads

Abstract

A loading-controlled Ag/C foam catalyst prepared by facile electrochemical growth in an environmentally friendly electrolyte with 5,5-dimethylhydantoin (DMH) and niacin (NA) as complexing agents is reported. By controlling the cathodic current density and the growth time, the loading amount of silver on carbon support can be easily controlled. Ag/C foam catalyst with small size, ideal distribution, and controllable loading amount of Ag particles can be obtained on foam carbon support.

Keywords

Catalyses Materials preparations Thin films 

Notes

Funding information

Supports of the National Natural Science Foundation of China (51772039), the Natural Science Foundation of Liaoning Province (20180510020), the Fundamental Research Funds for the Central Universities (DUT18LK15 and DUT18LK21), the National Key Research and Development Program of China (2016YFB0402705), and the Supercomputing Center of Dalian University of Technology for this work are gratefully acknowledged.

References

  1. 1.
    Boudghene Stambouli A, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sust Energ Rev 6:295–304CrossRefGoogle Scholar
  2. 2.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRefGoogle Scholar
  3. 3.
    Zhu W, Zhang L, Yang P, Hu C, Luo Z, Chang X, Zhao Z-J, Gong J (2018) Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew Chem Int Ed Engl 57(36):11544–11548CrossRefGoogle Scholar
  4. 4.
    Strasser P, Gliech M, Kuehl S, Moeller T (2018) Electrochemical processes on solid shaped nanoparticles with defined facets. Chem Soc Rev 47:715–735CrossRefGoogle Scholar
  5. 5.
    Nie X, Jiang X, Wang H, Luo W, Janik MJ, Chen Y, Guo X, Song C (2018) Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catal 8:4873–4892CrossRefGoogle Scholar
  6. 6.
    Mukherjee S, Cullen DA, Karakalos S, Liu K, Zhang H, Zhao S, Xu H, More KL, Wang G, Wu G (2018) Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48:217–226CrossRefGoogle Scholar
  7. 7.
    Deng J, Iñiguez JA, Liu C (2018) Electrocatalytic nitrogen reduction at low temperature. Joule 2:846–856CrossRefGoogle Scholar
  8. 8.
    Ma X, Zhang J, Jiang Q, Liu X, Xu W, Zheng M, Hou B (2016) Highly dispersed Ag/graphene composites with enhanced electro-oxidation of hydrazine. Sci Adv Mater 8:1305–1308CrossRefGoogle Scholar
  9. 9.
    Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRefGoogle Scholar
  10. 10.
    Zhao H, Song J, Song X, Yan Z, Zeng H (2015) Ag/white graphene foam for catalytic oxidation of methanol with high efficiency and stability. J Mater Chem A 3:6679–6684CrossRefGoogle Scholar
  11. 11.
    Yang W, Yang S, Sun W, Sun G, Xin Q (2006) Nanostructured silver catalyzed nickel foam cathode for an aluminum–hydrogen peroxide fuel cell. J Power Sources 160:1420–1424CrossRefGoogle Scholar
  12. 12.
    Wu X, Chen F, Jin Y, Zhang N, Johnston RL (2015) Silver-copper nanoalloy catalyst layer for bifunctional air electrodes in alkaline media. ACS Appl Mater Interfaces 7:17782–17791CrossRefGoogle Scholar
  13. 13.
    Sun S, Miao H, Xue Y, Wang Q, Li S, Liu Z (2016) Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries. Electrochim Acta 214:49–55CrossRefGoogle Scholar
  14. 14.
    Davis DJ, Raji A-RO, Lambert TN, Vigil JA, Li L, Nan K, Tour JM (2014) Silver-graphene nanoribbon composite catalyst for the oxygen reduction reaction in alkaline electrolyte. Electroanalysis 26:164–170CrossRefGoogle Scholar
  15. 15.
    Liu R, Yu X, Zhang G, Zhang S, Cao H, Dolbecq A, Mialane P, Keita B, Zhi L (2013) Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction. J Mater Chem A 1:11961–11969CrossRefGoogle Scholar
  16. 16.
    Yu Q, Meng X, Shi L, Liu H, Ye J (2016) Superfine Ag nanoparticles decorated Zn nanoplates for active and selective electrocatalytic CO2 reduction to CO. Chem Commun 52:14105–14108Google Scholar
  17. 17.
    Singh MR, Kwon Y, Lum Y, Ager JW, Bell AT (2016) Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J Am Chem Soc 138:13006–13012Google Scholar
  18. 18.
    Fan L, Li X, Song X, Hu N, Xiong D, Koo A, Sun X (2018) Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl Mater Interfaces 10:2637–2648CrossRefGoogle Scholar
  19. 19.
    Song X, Li X, Bai Z, Yan B, Xiong D, Lin L, Zhao H, Li D, Shao Y (2018) Rationally-designed configuration of directly-coated Ni3S2/Ni electrode by RGO providing superior sodium storage. Carbon 133:14–22CrossRefGoogle Scholar
  20. 20.
    Xiong D, Li X, Bai Z, Lu S (2018) Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14:1703419CrossRefGoogle Scholar
  21. 21.
    Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3:1437–1446CrossRefGoogle Scholar
  22. 22.
    Zielasek V, Juergens B, Schulz C, Biener J, Biener MM, Hamza AV, Baeumer M (2006) Gold catalysts: nanoporous gold foams. Angewandte Chemie-International Edition 45:8241–8244CrossRefGoogle Scholar
  23. 23.
    Xu M, Sui Y, Wang C, Zhou B, Wei Y, Zou B (2015) Design of porous Ag platelet structures with tunable porosity and high catalytic activity. J Mater Chem A 3:22339–22346CrossRefGoogle Scholar
  24. 24.
    Tappan BC, Huynh MH, Hiskey MA, Chavez DE, Luther EP, Mang JT, Son SF (2006) Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. J Am Chem Soc 128:6589–6594CrossRefGoogle Scholar
  25. 25.
    Wang Y-J, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115:3433–3467CrossRefGoogle Scholar
  26. 26.
    Guo DJ, Li HL (2005) Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon 43:1259–1264CrossRefGoogle Scholar
  27. 27.
    Gao G, Guo D, Wang C, Li H (2007) Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation. Electrochem Commun 9:1582–1586CrossRefGoogle Scholar
  28. 28.
    Lim EJ, Choi SM, Seo MH, Kim Y, Lee S, Kim WB (2013) Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem Commun 28:100–103CrossRefGoogle Scholar
  29. 29.
    Pestryakov AN, Lunin VV, Devochkin AN, Petrov LA, Bogdanchikova NE, Petranovskii VP (2002) Selective oxidation of alcohols over foam-metal catalysts. Appl Catal A Gen 227:125–130CrossRefGoogle Scholar
  30. 30.
    Pestryakov AN, Lunin VV, Bogdanchikova NE, Petranovskii VP, Knop-Gericke A (2003) Supported foam-silver catalysts for alcohol partial oxidation. Catal Commun 4:327–331CrossRefGoogle Scholar
  31. 31.
    Pestryakov AN, Bogdanchikova NE, Knop-Gericke A (2004) Alcohol selective oxidation over modified foam-silver catalysts. Catal Today 91–92:49–52CrossRefGoogle Scholar
  32. 32.
    Liu A, Ren X, An M, Zhang J, Yang P, Wang B, Zhu Y, Wang C (2014) A combined theoretical and experimental study for silver electroplating. Sci Rep 4:3837CrossRefGoogle Scholar
  33. 33.
    Liu A, Ren X, Wang B, Zhang J, Yang P, Zhang J, An M (2014) Complexing agent study via computational chemistry for environmentally friendly silver electrodeposition and the application of silver deposit. RSC Adv 4:40930–40940CrossRefGoogle Scholar
  34. 34.
    Liu A, Ren X, Zhang J, Li D, An M (2016) Complexing agent study for environmentally friendly silver electrodeposition(II): electrochemical behavior of silver complex. RSC Adv 6:7348–7355CrossRefGoogle Scholar
  35. 35.
    Han J-J, Li N, Zhang T-Y (2009) Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J Power Sources 193:885–889CrossRefGoogle Scholar
  36. 36.
    Hartung J, Weber G, Beyer L, Szargan R, Kreutzmann J (1986) Schwermetallchelate von α-cyano-β-amino-dithioacrylsäureestern. Z Anorg Allg Chem 543:186–191CrossRefGoogle Scholar
  37. 37.
    Grunze M, Lamb RN (1988) Adhesion of vapour phase deposited ultra-thin polyimide films on polycrystalline silver. Surf Sci 204:183–212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anmin Liu
    • 1
  • Xuefeng Ren
    • 2
  • Yilin Yao
    • 1
  • Qiyue Yang
    • 1
  • Mengfan Gao
    • 1
  • Yanan Yang
    • 1
  • Jing Guo
    • 1
  • Yanqiang Li
    • 1
  • Liguo Gao
    • 1
  • Tingli Ma
    • 1
    • 3
  1. 1.State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical EngineeringDalian University of TechnologyPanjinChina
  2. 2.School of Food and EnvironmentDalian University of TechnologyPanjinChina
  3. 3.Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations