Advertisement

Ionics

, Volume 25, Issue 6, pp 2607–2614 | Cite as

Lithium titanate nanotubes as active fillers for lithium-ion polyacrylonitrile solid polymer electrolytes

  • Fernando Pignanelli
  • Mariano RomeroEmail author
  • Martín Esteves
  • Luciana Fernández-Werner
  • Ricardo FaccioEmail author
  • Alvaro W. Mombrú
Original Paper
  • 108 Downloads

Abstract

We report the effect of lithium titanate nanotubes (LiTNT) as active fillers for lithium-ion solid polymer electrolytes for lithium batteries. The interaction of LiTNT with polyacrylonitrile host material and enhancement on lithium perchlorate ionic-pair dissociation was clearly evidenced by our vibrational spectroscopy and confocal Raman microscopy studies. In strong correlation with the structural characterization, the active role of LiTNT fillers was evidenced by means of impedance spectroscopy analysis revealing the presence of two contributions to the ionic transport, one due to the bulk and the other possibly mediated by the LiTNT surface in the nanocomposites. A four-order-magnitude enhancement on the lithium-ion bulk conductivity was observed for 15% LiTNT loadings with respect to unloaded samples showing an increment up to ~ 7.1 × 10−4 S.cm−1. In addition, we also evidence that the LiTNT surface-mediated contribution to the lithium-ion transport yielded conductivities in the same order of magnitude.

Keywords

Lithium titanate nanotubes Active filler Lithium-ion Polymer electrolyte 

Notes

Acknowledgments

The authors thank the Uruguayan CSIC, ANII, and PEDECIBA funding institutions. We would like to thank Alvaro Olivera for the technical support and the collaboration of Laura Fornaro at GDMEA-CURE high-resolution transmission electron microscopy laboratory.

Funding information

We also are thankful for financial support of EQC-X-2012-1-14 ANII.

References

  1. 1.
    Chilaka N, Ghosh S (2014) Dielectric studies of poly (ethylene glycol)-polyurethane/poly (methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241CrossRefGoogle Scholar
  2. 2.
    Kumar Y, Hashmi S, Pandey G (2011) Ionic liquid mediated magnesium ion conduction in poly (ethylene oxide) based polymer electrolyte. Electrochim Acta 56(11):3864–3873CrossRefGoogle Scholar
  3. 3.
    Ostrovskii D, Jacobsson P (2001) Concentrational changes in PAN-based polymer gel electrolyte under current flow: in situ micro-Raman investigation. J Power Sources 97:667–670CrossRefGoogle Scholar
  4. 4.
    Sengwa R, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly (methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75(6):765–774CrossRefGoogle Scholar
  5. 5.
    Ulaganathan M, Mathew CM, Rajendran S (2013) Highly porous lithium-ion conducting solvent-free poly (vinylidene fluoride-co-hexafluoropropylene)/poly (ethyl methacrylate) based polymer blend electrolytes for Li battery applications. Electrochim Acta 93:230–235CrossRefGoogle Scholar
  6. 6.
    Shekibi Y, Rüther T, Huang J, Hollenkamp AF (2012) Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity. Phys Chem Chem Phys 14(13):4597–4604CrossRefGoogle Scholar
  7. 7.
    Bandara L, Dissanayake M, Mellander B-E (1998) Ionic conductivity of plasticized (PEO)-LiCF3SO3 electrolytes. Electrochim Acta 43(10–11):1447–1451CrossRefGoogle Scholar
  8. 8.
    Romero M, Faccio R, Mombrú ÁW (2016) Novel fluorine-free 2, 2′-bis (4, 5-dimethylimidazole) additive for lithium-ion poly (methyl methacrylate) solid polymer electrolytes. RSC Adv 6(71):67150–67156CrossRefGoogle Scholar
  9. 9.
    Scheers J, Lim D-H, Kim J-K, Paillard E, Henderson WA, Johansson P, Ahn J-H, Jacobsson P (2014) All fluorine-free lithium battery electrolytes. J Power Sources 251:451–458CrossRefGoogle Scholar
  10. 10.
    Wieczorek W, Zalewska A, Raducha D, Florjańczyk Z, Stevens J (1998) Composite polyether electrolytes with Lewis acid type additives. J Phys Chem B 102(2):352–360CrossRefGoogle Scholar
  11. 11.
    Shin J, Passerini S (2004) PEO LiN (SO 2 CF 2 CF 3) 2 polymer electrolytes v. effect of fillers on ionic transport properties. J Electrochem Soc 151(2):A238–A245CrossRefGoogle Scholar
  12. 12.
    Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147(5):1718–1721CrossRefGoogle Scholar
  13. 13.
    Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103(48):10632–10638CrossRefGoogle Scholar
  14. 14.
    Panero S, Scrosati B, Greenbaum S (1992) Ionic conductivity and 7Li NMR study of poly (ethylene glycol) complexed with lithium salts. Electrochim Acta 37(9):1533–1539CrossRefGoogle Scholar
  15. 15.
    Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52(2):261–268CrossRefGoogle Scholar
  16. 16.
    Romero M, Faccio R, Vázquez S, Mombrú ÁW (2016) Enhancement of lithium conductivity and evidence of lithium dissociation for LLTO-PMMA nanocomposite electrolyte. Mater Lett 172:1–5CrossRefGoogle Scholar
  17. 17.
    Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745CrossRefGoogle Scholar
  18. 18.
    Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed 55(40):12538–12542CrossRefGoogle Scholar
  19. 19.
    Yang T, Zheng J, Cheng Q, Hu Y-Y, Chan CK (2017) Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl Mater Interfaces 9(26):21773–21780CrossRefGoogle Scholar
  20. 20.
    Pignanelli F, Romero M, Faccio R, Fernández-Werner L, Mombrú AW (2018) Enhancement of lithium-ion transport in poly (acrylonitrile) with hydrogen titanate nanotube fillers as solid polymer electrolytes for lithium-ion battery applications. J Phys Chem C 122(3):1492–1499CrossRefGoogle Scholar
  21. 21.
    Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9(10):2229–2238CrossRefGoogle Scholar
  22. 22.
    Sauvet A-L, Baliteau S, Lopez C, Fabry P (2004) Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13. J Solid State Chem 177(12):4508–4515CrossRefGoogle Scholar
  23. 23.
    Fernández-Werner L, Pignanelli F, Montenegro B, Romero M, Pardo H, Faccio R, Mombrú ÁW (2017) Characterization of titanate nanotubes for energy applications. J Energy Storage 12:66–77CrossRefGoogle Scholar
  24. 24.
    Sugita M, Tsuji M, Abe M (1990) Synthetic inorganic ion-exchange materials. LVIII. Hydrothermal synthesis of a new layered lithium titanate and its alkali ion exchange. Bull Chem Soc Jpn 63(7):1978–1984CrossRefGoogle Scholar
  25. 25.
    Bashir Z (1994) Co-crystallization of solvents with polymers: the x-ray diffraction behavior of solvent-containing and solvent-free polyacrylonitrile. J Polym Sci B Polym Phys 32(6):1115–1128CrossRefGoogle Scholar
  26. 26.
    Xue TJ, McKinney MA, Wilkie CA (1997) The thermal degradation of polyacrylonitrile. Polym Degrad Stab 58(1–2):193–202CrossRefGoogle Scholar
  27. 27.
    Wu Q-Y, Chen X-N, Wan L-S, Xu Z-K (2012) Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J Phys Chem B 116(28):8321–8330CrossRefGoogle Scholar
  28. 28.
    Wang Z, Huang B, Huang H, Chen L, Xue R, Wang F (1996) Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy. Electrochim Acta 41(9):1443–1446CrossRefGoogle Scholar
  29. 29.
    Wang Z, Huang B, Wang S, Xue R, Huang X, Chen L (1997) Vibrational spectroscopic study of the interaction between lithium perchlorate and dimethylsulfoxide. Electrochim Acta 42(17):2611–2617CrossRefGoogle Scholar
  30. 30.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11(15):1307–1311CrossRefGoogle Scholar
  31. 31.
    Pignanelli F, Romero M, Faccio R, Mombrú ÁW (2017) Experimental and theoretical study of ionic pair dissociation in a lithium ion–linear polyethylenimine–polyacrylonitrile blend for solid polymer electrolytes. J Phys Chem B 121(27):6759–6765.  https://doi.org/10.1021/acs.jpcb.7b04634 CrossRefGoogle Scholar
  32. 32.
    Irvine JTS, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fernando Pignanelli
    • 1
  • Mariano Romero
    • 1
    Email author
  • Martín Esteves
    • 1
  • Luciana Fernández-Werner
    • 1
  • Ricardo Faccio
    • 1
    Email author
  • Alvaro W. Mombrú
    • 1
  1. 1.Centro NanoMat/CryssMat/Física – DETEMA, Facultad de QuímicaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations