Advertisement

Ionics

, Volume 25, Issue 3, pp 1315–1321 | Cite as

Electrical properties of the ordered oxygen-deficient perovskite Ca2Fe0.5Ga1.5O5

  • Ram Krishna Hona
  • Ashfia Huq
  • Farshid RamezanipourEmail author
Original Paper
  • 140 Downloads

Abstract

Ca2Fe0.5Ga1.5O5 is an oxygen-deficient perovskite, where the defects generated due to oxygen-deficiency are distributed in an ordered fashion. Neutron diffraction experiments indicate that the defect-order results in the formation of alternating (Ga)O4 tetrahedral and (FeGa)O6 octahedral units, forming the so-called brownmillerite-type structure. This material represents the highest degree of Ga-doping in the brownmillerite compound Ca2Fe2O5, which can be achieved using solid-state synthesis method. X-ray photoelectron spectroscopy (XPS) combined with iodometric titration was employed to determine the Fe oxidation state and the oxygen-content in Ca2Fe0.5Ga1.5O5. The XPS studies show that Fe is predominantly in trivalent state, and the iodometric titrations indicate that the oxygen stoichiometry is 5.07 per formula unit, consistent with primarily trivalent Fe. Variable-temperature electrical conductivity studies of Ca2Fe0.5Ga1.5O5 have been performed in a wide temperature range, 25–800 °C, indicating semiconducting behavior and significant contribution of ionic conductivity to total conductivity of this material.

Keywords

Electrical properties Crystal structure Ordering Oxygen-deficient perovskite 

Notes

Acknowledgements

F.R. thanks the Conn Center for Renewable Energy Research and Jacek Jasinski for their help. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

Funding information

This work is supported in part by the National Science Foundation under Cooperative Agreement No. 1355438.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Patrakeev MV, Kharton VV, Bakhteeva YA, Shaula AL, Leonidov IA, Kozhevnikov VL, Naumovich EN, Yaremchenko AA, Marques FMB (2006) Oxygen nonstoichiometry and mixed conductivity of SrFe1−xMxO3−δ (M=Al, Ga): effects of B-site doping. Solid State Sci 8(5):476–487.  https://doi.org/10.1016/j.solidstatesciences.2006.01.006 CrossRefGoogle Scholar
  2. 2.
    Gómez L, Galeano V, Parra R, Michel CR, Paucar C, Morán O (2015) Carbon dioxide gas sensing properties of ordered oxygen deficient perovskite LnBaCo2O5+δ (Ln=La, Eu). Sensors Actuators B: Chem 221:1455–1460.  https://doi.org/10.1016/j.snb.2015.07.080 CrossRefGoogle Scholar
  3. 3.
    Liu P, Luo Z, Kong J, Yang X, Liu Q, Xu H (2018) Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based dual-gradient cathodes for solid oxide fuel cells. Ceram Int 44(4):4516–4519.  https://doi.org/10.1016/j.ceramint.2017.12.034 CrossRefGoogle Scholar
  4. 4.
    Chen G, Zhou W, Guan D, Sunarso J, Zhu Y, Hu X, Zhang W, Shao Z (2017) Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba(0.5)Sr(0.5)co(0.8)Fe(0.2)O(3−δ) nanofilms with tunable oxidation state. Sci Adv 3(6):e1603206.  https://doi.org/10.1126/sciadv.1603206 CrossRefGoogle Scholar
  5. 5.
    Suescun L, Chmaissem O, Mais J, Dabrowski B, Jorgensen JD (2007) Crystal structures, charge and oxygen-vacancy ordering in oxygen deficient perovskites SrMnOx (x<2.7). J Solid State Chem 180(5):1698–1707.  https://doi.org/10.1016/j.jssc.2007.03.020 CrossRefGoogle Scholar
  6. 6.
    Hodges JP, Jorgensen JD, Xiong X, Dabrowski B, Mini SM, Kimball CW, Materials Science D, Northern Illinois U (2000) Evolution of oxygen-vacancy ordered crystal structures in the perovskite series SrnFenO3n-1 (n=2, 4, 8, and ∞), and the relationship to electronic and magnetic properties. J Solid State Chem 151(190):209.  https://doi.org/10.1006/jssc.1999.8640 Google Scholar
  7. 7.
    Hona RK, Huq A, Mulmi S, Ramezanipour F (2017) Transformation of structure, electrical conductivity, and magnetism in AA′Fe2O6−δ, a = Sr, ca and a′ = Sr. Inorg Chem 56(16):9716–9724.  https://doi.org/10.1021/acs.inorgchem.7b01228 CrossRefGoogle Scholar
  8. 8.
    Hona RK, Huq A, Ramezanipour F (2017) Unraveling the role of structural order in the transformation of electrical conductivity in Ca2FeCoO6−δ, CaSrFeCoO6−δ, and Sr2FeCoO6−δ. Inorg Chem 56(23):14494–14505.  https://doi.org/10.1021/acs.inorgchem.7b02079 CrossRefGoogle Scholar
  9. 9.
    Mulmi S, Hona RK, Jasinski JB, Ramezanipour F (2018) Electrical conductivity of Sr2-xCaxFeMnO5 (x = 0, 1, 2). J Solid State Electrochem 22:2329–2338.  https://doi.org/10.1007/s10008-018-3947-6 CrossRefGoogle Scholar
  10. 10.
    Hona RK, Ramezanipour F (2018) Variation in electrical conductivity of A2 Fe2 O5 (A = Sr, Ba): the role of structural order. Mater Res Express 5(7):076307CrossRefGoogle Scholar
  11. 11.
    Ramezanipour F, Greedan JE, Cranswick LMD, Garlea VO, Donaberger RL, Siewenie J (2012) Systematic study of compositional and synthetic control of vacancy and magnetic ordering in oxygen-deficient perovskites Ca2Fe2–xMnxO5+yand CaSrFe2–xMnxO5+y (x = 1/2, 2/3, and 1; y = 0–1/2). J Am Chem Soc 134(6):3215–3227.  https://doi.org/10.1021/ja210985t CrossRefGoogle Scholar
  12. 12.
    Hona RK, Ramezanipour F (2018) Disparity in electrical and magnetic properties of isostructural oxygen-deficient perovskites BaSrCo2O6−δ and BaSrCoFeO6−δ. J Mater Sci Mater Electron 29:13464–13473.  https://doi.org/10.1007/s10854-018-9471-8 CrossRefGoogle Scholar
  13. 13.
    Ramezanipour F, Greedan JE, Siewenie J, Proffen T, Ryan DH, Grosvenor AP, Donaberger RL (2011) Local and average structures and magnetic properties of Sr2FeMnO5+y, y = 0.0, 0.5. Comparisons with Ca2FeMnO5 and the effect of the A-site cation. Inorg Chem 50(16):7779–7791.  https://doi.org/10.1021/ic200919m CrossRefGoogle Scholar
  14. 14.
    Ramezanipour F, Greedan JE, Siewenie J, Donaberger RL, Turner S, Botton GA (2012) A vacancy-disordered, oxygen-deficient perovskite with long-range magnetic ordering: local and average structures and magnetic properties of Sr2Fe1.5Cr0.5O5. Inorg Chem 51(4):2638–2644.  https://doi.org/10.1021/ic202590r CrossRefGoogle Scholar
  15. 15.
    Hona RK, Huq A, Ramezanipour F (2018) Magnetic structure of CaSrFeCoO6–δ: correlations with structural order. Mater Res Bull 106:131–136.  https://doi.org/10.1016/j.materresbull.2018.05.030 CrossRefGoogle Scholar
  16. 16.
    Ramezanipour F, Greedan JE, Grosvenor AP, Britten JF, Cranswick LMD, Garlea VO (2010) Intralayer cation ordering in a brownmillerite superstructure: synthesis, crystal, and magnetic structures of Ca2FeCoO5. Chem Mater 22(21):6008–6020.  https://doi.org/10.1021/cm1023025 CrossRefGoogle Scholar
  17. 17.
    Turner S, Verbeeck J, Ramezanipour F, Greedan JE, Van Tendeloo G, Botton GA (2012) Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy. Chem Mater 24(10):1904–1909.  https://doi.org/10.1021/cm300640g CrossRefGoogle Scholar
  18. 18.
    Ramezanipour F, Greedan JE, Cranswick LMD, Garlea VO, Siewenie J, King G, Llobet A, Donaberger RL (2012) The effect of the B-site cation and oxygen stoichiometry on the local and average crystal and magnetic structures of Sr2Fe1.9M0.1O5+y (M = Mn, Cr, Co; y = 0, 0.5). J Mater Chem 22(19):9522–9538.  https://doi.org/10.1039/C2JM30957B CrossRefGoogle Scholar
  19. 19.
    Ramezanipour F, Cowie B, Derakhshan S, Greedan JE, Cranswick LMD (2009) Crystal and magnetic structures of the brownmillerite compound Ca2Fe1.039(8)Mn0.962(8)O5. J Solid State Chem 182(1):153–159.  https://doi.org/10.1016/j.jssc.2008.10.010 CrossRefGoogle Scholar
  20. 20.
    Fossdal A, Menon M, Wærnhus I, Wiik K, Einarsrud MA, Grande T (2005) Crystal structure and thermal expansion of La1−xSrxFeO3−δ materials. J Am CeramSoc 87(10):1952–1958.  https://doi.org/10.1111/j.1151-2916.2004.tb06346.x CrossRefGoogle Scholar
  21. 21.
    Anikina PV, Markov AA, Patrakeev MV, Leonidov IA, Kozhevnikov VL (2009) The structure, nonstoichiometry, and thermodynamic characteristics of oxygen in strontium ferrite doped with niobium, SrFe1−xNb xO3−δ. Russ J Phys Chem A 83(5):699–704.  https://doi.org/10.1134/S0036024409050021 CrossRefGoogle Scholar
  22. 22.
    Colville AA, Geller S (1971) The crystal structure of brownmillerite, Ca2FeAlO5. Acta Cryst B27:2311CrossRefGoogle Scholar
  23. 23.
    D’Hondt H, Hadermann J, Abakumov AM, Kalyuzhnaya AS, Rozova MG, Tsirlin AA, Nath R, HaiyanTan JV, Antipov EV, Van Tendeloo G (2009) Synthesis, crystal structure and magnetic properties of the Sr2Al 0.78Mn1.22O5.2 anion-deficient layered perovskite. J Solid State Chem 182:356–363CrossRefGoogle Scholar
  24. 24.
    Lindberg F, Istomin SY, Berastegui P, Svensson G, Kazakov SM, Antipov EV (2003) Synthesis and structural studies of Sr2Co2−xGaxO5, 0.3⩽x⩽0.8. J Solid State Chem 173(2):395–406.  https://doi.org/10.1016/S0022-4596(03)00129-4 CrossRefGoogle Scholar
  25. 25.
    Zhang GB, Smyth DM (1995) Defects and transport of the brownmillerite oxides with high oxygen ion conductivity — Ba2In2O5. Solid State Ionics 82(3):161–172.  https://doi.org/10.1016/0167-2738(95)00196-2 CrossRefGoogle Scholar
  26. 26.
    Didier C, Claridge J, Rosseinsky M (2014) Crystal structure of brownmillerite Ba2InGaO5. J Solid State Chem 218:38–43.  https://doi.org/10.1016/j.jssc.2014.06.011 CrossRefGoogle Scholar
  27. 27.
    Mohn CE, Allan NL, Stølen S (2006) Sr and Ga substituted Ba2In2O5: linking ionic conductivity and the potential energy surface. Solid State Ionics 177(3):223–228.  https://doi.org/10.1016/j.ssi.2005.11.006 CrossRefGoogle Scholar
  28. 28.
    Kahlenberg V, Shaw CSJ (2001) Ca2Ga2O5: a new high pressure oxogallate. Z Kristallog - Cryst Mater 216(4):206–209Google Scholar
  29. 29.
    Kahlenberg V, Goettgens V, Mair P, Schmidmair D (2015) High-pressure synthesis and crystal structures of the strontium oxogallates Sr2Ga2O5 and Sr5Ga6O14. J Solid State Chem 228:27–35.  https://doi.org/10.1016/j.jssc.2015.04.016 CrossRefGoogle Scholar
  30. 30.
    Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR:86–748Google Scholar
  31. 31.
    Toby BH (2001) A graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  32. 32.
    Luo K, Amano Patino M, Hayward MA (2015) Ca2Cr0.5Ga1.5O5—an extremely redox-stable brownmillerite phase. J Solid State Chem 222:71–75.  https://doi.org/10.1016/j.jssc.2014.11.011 CrossRefGoogle Scholar
  33. 33.
    Julián Morales LS, Martín F, Berry F, Renc X (2005) Synthesis and characterization of nanometric Iron and Iron-titanium oxides by mechanical milling: electrochemical properties as anodic materials in Lithium cells. J Electrochem Soc 152(9):A1748–A1754CrossRefGoogle Scholar
  34. 34.
    Doi A, Nomura M, Obukuro Y, Maeda R, Obata K, Matsushima S, Kobayashi K (2014) Characterization of Ti-doped CaFe2O4 prepared from a malic acid complex. J Ceram Soc Jpn 122(2):175–178CrossRefGoogle Scholar
  35. 35.
    Ruttanapun C, Maensiri S (2015) Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1− xCrxO2 ( x = 0.25, 0.5, 0.75). J Phys D Appl Phys 48:495103.  https://doi.org/10.1088/0022-3727/48/49/495103 CrossRefGoogle Scholar
  36. 36.
    Ghaffari M, Liu T, Huang H, Tan OK, Shannon M (2012) Investigation of local structure effect and X-ray absorption characteristics (EXAFS) of Fe (Ti) K-edge on photocatalyst properties of SrTi(1−x)FexO(3−δ). Mater Chem Phys 136(2):347–357.  https://doi.org/10.1016/j.matchemphys.2012.06.037 CrossRefGoogle Scholar
  37. 37.
    Mueller DN, De Souza RA, Yoo H-I, Martin M (2012) Phase stability and oxygen nonstoichiometry of highly oxygen-deficient perovskite-type oxides: a case study of (Ba,Sr)(Co,Fe)O3−δ. Chem Mater 24(2):269–274.  https://doi.org/10.1021/cm2033004 CrossRefGoogle Scholar
  38. 38.
    Shaula A, Pivak Y, Waerenborgh J, Gaczynski P, Yaremchenko A, Kharton V (2006) Ionic conductivity of brownmillerite-type calcium ferrite under oxidizing conditions. Solid State Ionics 177(33–34):2923–2930.  https://doi.org/10.1016/j.ssi.2006.08.030 CrossRefGoogle Scholar
  39. 39.
    Asenath-Smith E, Lokuhewa IN, Misture ST, Edwards DD (2010) p-Type thermoelectric properties of the oxygen-deficient perovskite Ca2Fe2O5 in the brownmillerite structure. J Solid State Chem 183(7):1670–1677.  https://doi.org/10.1016/j.jssc.2010.05.016 CrossRefGoogle Scholar
  40. 40.
    Zhang Q, Xu ZF, Wang LF, Gao SH, Yuan SJ (2015) Structural and electromagnetic properties driven by oxygen vacancy in Sr2FeMoO6−δ double perovskite. J Alloys Compd 649:1151–1155.  https://doi.org/10.1016/j.jallcom.2015.07.211 CrossRefGoogle Scholar
  41. 41.
    Kozhevnikov VL, Leonidov IA, Mitberg EB, Patrakeev MV, Petrov AN, Poeppelmeier KR (2003) Conductivity and carrier traps in La1−xSrxCo1−zMnzO3−δ (x=0.3; z=0 and 0.25). J Solid State Chem 172(2):296–304.  https://doi.org/10.1016/S0022-4596(03)00088-4 CrossRefGoogle Scholar
  42. 42.
    Kontoulis I, Steele BCH (1992) Fabrication and conductivity of a new compound Ca2Cr2O5. J Eur Ceram Soc 9:459–462CrossRefGoogle Scholar
  43. 43.
    Asenath-Smith E, Misture ST, Edwards DD (2011) Structural behavior and thermoelectric properties of the brownmillerite system Ca2(ZnxFe2−x)O5. J Solid State Chem 184(8):2167–2177.  https://doi.org/10.1016/j.jssc.2011.06.009 CrossRefGoogle Scholar
  44. 44.
    Bhosale DR, Yusuf SM, Kumar A, Mukadam MD, Patil SI (2017) High oxide ion conductivity below 500 °C in garnets LaxY3-xFe5O12+δ. Phys Rev Mater 1(1):015001.  https://doi.org/10.1103/PhysRevMaterials.1.015001 CrossRefGoogle Scholar
  45. 45.
    Corallini S, Ceretti M, Cousson A, Ritter C, Longhin M, Papet P, Paulus W (2017) Cubic Sr2ScGaO5 perovskite: structural stability, oxygen defect structure, and ion conductivity explored on single crystals. Inorg Chem 56(5):2977–2984.  https://doi.org/10.1021/acs.inorgchem.6b03106 CrossRefGoogle Scholar
  46. 46.
    Fargali AA, Zayed MK, Khedr MH, Moustafa AF (2008) Phase and conductivity dynamics of strontium hexaferrite nanocrystals in a hydrogen gas flow. Int J Phys Sci 3:131–139Google Scholar
  47. 47.
    Richardson G, O'Kane SEJ, Niemann RG, Peltola TA, Foster JM, Cameron PJ, Walker AB (2016) Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ Sci 9(4):1476–1485.  https://doi.org/10.1039/C5EE02740C CrossRefGoogle Scholar
  48. 48.
    Andoulsi R, Horchani-Naifer K, Férid M (2013) Electrical conductivity of La1−xCaxFeO3−δ solid solutions. Ceram Int 39(6):6527–6531.  https://doi.org/10.1016/j.ceramint.2013.01.085 CrossRefGoogle Scholar
  49. 49.
    Pizzini S (2015) Physical chemistry of semiconductor materials and Processes. Wiley, West SussexCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of LouisvilleLouisvilleUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations