, Volume 25, Issue 1, pp 367–371 | Cite as

Cerium oxide-modified lithium chromium titanate as high-performance anode material for lithium-ion battery

  • Youzhu YuEmail author
  • Yuhua Guo
Short Communication


A novel CeO2-modified Li5Cr7Ti6O25 composite as Ti-based anode has been developed to enhance the reversible capacity of the lithium-ion battery. The results show that an amorphous CeO2 film with thickness of around 2–3 nm is wrapped on the surface of Li5Cr7Ti6O25 particles, and CeO2 modification broadens the lithium ion migration channel. CeO2-coated Li5Cr7Ti6O25 shows wonderful reversible delithiation capacity of 178.0 mAh g−1 at 400 mA g−1 after 100 cycles. The enhanced property is ascribed to the reduced polarization and enhanced lithium ion diffusion after CeO2 modification. The wonderful delithiation capacity and low cost make CeO2-coated Li5Cr7Ti6O25 a prospective anode material for a practical lithium-ion battery, and the same strategy used to develop other Ti-based anode materials with high property.


Li5Cr7Ti6O25 Anode material Lithium-ion battery Coating 


Funding information

This work was supported by the Foundation of Anyang Institute of Technology, the Project of Science and Technology of the Henan Province (no. 182102210200).


  1. 1.
    Han X, Gui X, Yi TF, Li Y, Yue C (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opin Solid State Mater Sci 22(4):109–126. CrossRefGoogle Scholar
  2. 2.
    Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667. CrossRefGoogle Scholar
  3. 3.
    Yi TF, Zhu YR, Tao W, Luo S, Xie Y, Li XF (2018) Recent advances in the research of MLi2Ti6O14 (M=2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41. CrossRefGoogle Scholar
  4. 4.
    Yi TF, Yang SY, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium ion batteries. J Mater Chem A 3(11):5750–5777. CrossRefGoogle Scholar
  5. 5.
    Xu D, Wang P, Yang R (2017) Conducting polythiophene-wrapped Li4Ti5O12 spinel anode material for ultralong cycle-life Li-ion batteries. Ceram Int 43(5):4712–4715. CrossRefGoogle Scholar
  6. 6.
    Yang X, Zheng A, Wang X, Niu B (2017) Graphene nanosheet and carbon layer co-decorated Li4Ti5O12 as high-performance anode material for rechargeable lithium-ion batteries. Ceram Int 43(3):3252–3258. CrossRefGoogle Scholar
  7. 7.
    Li J, Huang S, Li S, Pan C (2017) Synthesis and electrochemical performance of Li4Ti5O12/Ag composite prepared by electroless plating. Ceram Int 43(2):1650–1656. CrossRefGoogle Scholar
  8. 8.
    Capsoni D, Bini M, Massarotti V, Mustarelli P, Ferrari S, Chiodelli G, Mozzati MC, Galinetto P (2009) Cr and Ni doping of Li4Ti5O12: cation distribution and functional properties. J Phys Chem C 13(1):19664–19671CrossRefGoogle Scholar
  9. 9.
    Yi TF, Mei J, Zhu YR, Fang Z (2015) Li5Cr7Ti6O25 as a novel negative electrode material for lithium-ion batteries. Chem Commun 51(74):14050–14053. CrossRefGoogle Scholar
  10. 10.
    Guo S, Yi J, Sun Y, Zhou H (2016) Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ Sci 9(10):2978–3006. CrossRefGoogle Scholar
  11. 11.
    Yang X, Huang Y, Wang X, Jia D, Pang W, Guo Z, Tang X (2014) High rate capability core-shell lithium titanate@ceria nanosphere anode material synthesized by one-pot co-precipitation for lithium-ion batteries. J Power Sources 257(2):280–285CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Liu Y, Lu H, Ouyang TD, Zhang L (2016) Ce3+-doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithium-ion batteries. Electrochim Acta 189:147–157. CrossRefGoogle Scholar
  13. 13.
    Yuan W, Zhang H, Liu Q, Li G, Gao X (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135(22):199–207CrossRefGoogle Scholar
  14. 14.
    Feng W, Meng W, Su Y, Bao L, Chen S (2009) Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating. Electrochim Acta 54(27):6803–6807CrossRefGoogle Scholar
  15. 15.
    Liu S, Yan L, Lan H, Yu H, Qian S, Cheng X, Long N, Shui M, Shu J (2017) Investigation of Li5Cr7Ti6O25 as novel anode material for high-power lithium-ion batteries. Ceram Int 43(10):7908–7915. CrossRefGoogle Scholar
  16. 16.
    Mei J, Yi T, Li X, Zhu Y, Xie Y, Zhang C (2017) Robust strategy for crafting Li5Cr7Ti6O25@CeO2 composites as high-performance anode material for lithium-ion battery. ACS Appl Mater Interfaces 9(28):23662–23671. CrossRefGoogle Scholar
  17. 17.
    Yan L, Qian S, Yu H, Li P, Lan H, Long N, Zhang R, Shui M, Shu J (2017) Carbon-enhanced electrochemical performance for spinel Li5Cr7Ti6O25 as a lithium host material. ACS Sustainable Chem Eng 5(1):957–964CrossRefGoogle Scholar
  18. 18.
    Fan S, Zhong H, Yu H, Lou M, Xie Y, Zhu Y (2017) Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Sci China Mater 60:427–437. CrossRefGoogle Scholar
  19. 19.
    Borghols W, Wagemaker M, Lafont U, Kelder E, Mulder F (2009) Size effects in the Li4+xTi5O12 spinel. J Am Chem Soc 131:17786–17792. CrossRefGoogle Scholar
  20. 20.
    Lin X, Li P, Shao L, Shui M, Wang D, Long N, Ren Y, Shu J (2015) Lithium barium titanate: a stable lithium storage material for lithium-ion batteries. J Power Sources 278:546–554. CrossRefGoogle Scholar
  21. 21.
    Yan L, Yu H, Qian S, Li P, Lin X, Long N, Zhang R, Shui M, Shu J (2016) Enhanced lithium storage performance of Li5Cr9Ti4O24 anode by nitrogen and sulfur dual-doped carbon coating. Electrochim Acta 213:217–224. CrossRefGoogle Scholar
  22. 22.
    Yan L, Yu H, Qian S, Li P, Lin X, Wu Y, Long N, Shui M, Shu J (2016) Novel spinel Li5Cr9Ti4O24 anode: its electrochemical property and lithium storage process. Electrochim Acta 209:7–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Environmental EngineeringAnyang Institute of TechnologyAnyangChina

Personalised recommendations