, Volume 25, Issue 6, pp 2487–2499 | Cite as

Synthesis and electrochemical properties of Mg-doped and Al-doped LiMnPO4·Li3V2(PO4)3/C cathode materials for lithium-ion batteries

  • Lijun Dou
  • Enshan HanEmail author
  • Ling Li
  • Lingzhi Zhu
  • Shunpan Qiao
  • Hui Liu
Original Paper


In this paper, LiMn1−xMgxPO4·Li3V2(PO4)3/C (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.10) and LiMnPO4·Li3V2−yAly(PO4)3/C (y = 0.01, 0.02, 0.03, 0.05, 0.07, 0.10) composite cathode materials for lithium-ion batteries were successfully synthesized by a simple sol-gel method and modified by Mg2+ doped and Al3+ doped. The effects of Mg2+ and Al3+ doping on the microstructure and electrochemical properties of LiMnPO4·Li3V2(PO4)3/C were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAS energy spectrum analysis (EDS), constant current charge/discharge electrical test, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The analysis shows that the electrochemical properties of samples have been greatly improved. The results show that when x = 0.06 and y = 0.02, the material has the best electrochemical performance. Under the voltage range of 2.5–4.5 V, the initial discharge specific capacity at 0.1 C (1 C = 143 mAh g−1) is as high as 148.2 mAh g−1 and 134.4 mAh g−1, respectively.


Lithium-ion batteries Sol-gel method LiMnPO4·Li3V2(PO4)3/C Mg2+ doping Al3+ doping 


  1. 1.
    Wang G, Liu H, Liu J, Qiao S, Lu GM, Munroe P, Ahn H (2010) Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv Mater 22:4944–4948CrossRefGoogle Scholar
  2. 2.
    Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720CrossRefGoogle Scholar
  3. 3.
    Goodenough JB, Park K (2013) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  4. 4.
    Zhao K, Liu F, Niu C, Xu W, Dong Y, Zhang L, Xie S, Yan M, Wei Q, Zaho D, Mai L (2015) Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. Adv Sci 2:150–154Google Scholar
  5. 5.
    Liu H, Yang G, Zhang X, Gao P, Wang L, Fang J, Pintoc J, Jiang X (2012) Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries. J Mater Chem 22:11–39Google Scholar
  6. 6.
    Lee S, Park SS (2012) Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for lithium ion battery: structure, defect chemistry, lithium ion transport pathway, and dynamics. J Phys Chem C 116:25190–25197CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high rate Li-Ion batteries. Nano Lett 14:2849–2853CrossRefGoogle Scholar
  8. 8.
    Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J-B, Morcrette M, Tarascon J-M, Masquelier C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913CrossRefGoogle Scholar
  9. 9.
    Li GH, Azuma H, Tohda M (2002) LiMnPO[sub 4] as the cathode for lithium batteries. Electrochem Solid-State Lett 5:A135CrossRefGoogle Scholar
  10. 10.
    Liu J, Banis MN, Sun Q, Lushington A, Li R, Sham TK, Sun X (2014) Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries. Adv Mater 26:6472–6477CrossRefGoogle Scholar
  11. 11.
    Qiao YQ, Tu JP, Wang XL, Gu CD (2012) The low and high temperature electrochemical performances of Li3V2(PO4)3 cathode material for Li-ion batteries. J Power Sources 199:287–292CrossRefGoogle Scholar
  12. 12.
    Zhang R, Zhang Y, Zhu K, Du F, Fu Q, Yang X, Wang Y, Bie X, Chen G, Wei Y (2014) Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:12523–12530CrossRefGoogle Scholar
  13. 13.
    Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G (2003) Symmetric Electrodes for Electrochemical Energy-Storage Devices. J Power Sources 266:119–121Google Scholar
  14. 14.
    Naoi K, Kisu K, Iwama E, Sato Y, Shinoda M, Okita N, Naoi W (2015) Ultrafast cathode characteristics of nanocrystalline-Li3V2(PO4)3/carbon nanofiber composites. J Electrochem Soc 162:A827–A833CrossRefGoogle Scholar
  15. 15.
    Zhang X, Böckenfeld N, Berkemeier F, Balducci A (2014) Ionic-liquid-assisted synthesis of nanostructured and carbon-coated Li3V2(PO4)3 for high-power electrochemical storage devices. ChemSusChem 7:1710–1718CrossRefGoogle Scholar
  16. 16.
    Secchiaroli M, Giuli G, Fuchs B, Marassi R, Wohlfahrt-Mehrens M, Dsoke S (2015) High rate capability Li3V2-xNix(PO4)3/C (x =0, 0.05, and 0.1) cathodes for Li-ion asymmetric supercapacitors. J Mater Chem A 3:11807–11816CrossRefGoogle Scholar
  17. 17.
    Secchiaroli M, Nobili F, Tossici R, Giuli G, Marassi R (2015) Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3 prepared by using poly (acrylic acid) and D-(+)-glucose as carbon sources. J Power Sources 275:792–798CrossRefGoogle Scholar
  18. 18.
    Dang J, Xiang F, Gu N, Zhang R, Mukherjee R, Oh IK, Koratkar N, Yang Z (2013) Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries. J Power Sources 243:33–39CrossRefGoogle Scholar
  19. 19.
    Chen Y, Zhang D, Bian X, Bie X, Wang C, Du F, Jang M, Chen G, Wei Y (2012) Characterizations of the electrode/electrolyte interfacial properties of carbon coated Li3V2(PO4)3 cathode material in LiPF6 based electrolyte. Electrochim Acta 79:95–101CrossRefGoogle Scholar
  20. 20.
    Zhang LL, Liang G, Peng G, Zou F, Huang YH, Croft MC, Ignatov A (2012) Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116:12401–12408CrossRefGoogle Scholar
  21. 21.
    Liu LY, Lei XL, Tang H, Zeng RR, Chen YM, Zhang HY (2015) Influence of La doping on magnetic and electrochemical properties of Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Electrochim Acta 151:378–385CrossRefGoogle Scholar
  22. 22.
    Wang L, Li Z, Xu H, Zhang K (2008) Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries. J Phys Chem C 112:308–312CrossRefGoogle Scholar
  23. 23.
    Yang M-R, Ke W, Wu S (2007) Improving electrochemical properties of lithium iron phosphate by addition of vanadium. J Power Sources 165:646–650CrossRefGoogle Scholar
  24. 24.
    Zheng J, Zhang B, Yang Z, Ou X (2013) Studies of composite cathode material LiFePO4·Li3V2(PO4)3 and it’s precursor FeVO4·xH2O. Bull Chem Soc Jpn 86:376–381CrossRefGoogle Scholar
  25. 25.
    Jo J, Gim J, Song J (2017) One-pot pyro-synthesis of a high energy density LiFePO4–Li3V2(PO4)3 nanocomposite cathode for lithium-ion battery applications. Ceram Int 43:4288–4294CrossRefGoogle Scholar
  26. 26.
    Guo XD, Zhong BH, Liu H, Song Y, Wen JJ, Tang Y (2011) Electrochemical performance of LiFePO4–Li3V2(PO4)3 composite material prepared by solid-hydrothermal method. Trans Nonferrous Metals Soc China 21:1761–1766CrossRefGoogle Scholar
  27. 27.
    Xiang JY, Tu JP, Zhang L, Wang XL, Zhou Y, Qiao YQ, Lu Y (2010) Improved electrochemical performances of 9LiFePO4–Li3V2(PO4)3 composite prepared by a simple solid-state method. J Power Sources 195:8331–8335CrossRefGoogle Scholar
  28. 28.
    Zheng J-C, Li X-H, Wang Z-X et al (2009) Characteristics of xLiFePO4·yLi3V2(PO4)3 electrodes for lithium batteries. Ionics (Kiel) 15(6):753–759CrossRefGoogle Scholar
  29. 29.
    Bini M, Ferrari S, Capsoni D, Massarotti V (2011) Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochim Acta 56:2648–2655CrossRefGoogle Scholar
  30. 30.
    Luo YZ, Xu X, Zhang YX, Pi YQ, Yan MY, Wei QL, Tian XC, Mai LQ (2015) Three-dimensional LiMnPO4∙Li3V2(PO4)3/C nanocomposite as a bicontinuous cathode for high-rate and long-life lithium-ion batteries. Appl Mater Interfaces 7:17527–17534CrossRefGoogle Scholar
  31. 31.
    Zhai J, Zhao M, WANG D (2011) Effect of Mn-doping on performance of Li3V2(PO4)3/C cathode material for lithium ion batteries. Trans Nonferrous Metals Soc China 21:523CrossRefGoogle Scholar
  32. 32.
    Yang G, Ni H, Liu H, Gao P, Ji H, Roy S, Pinto J, Jiang X (2011) The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M=Mg, V, Fe, Co, Gd). J Power Sources 196:4747–4755CrossRefGoogle Scholar
  33. 33.
    Wang F, Yang J, NuLi YN, Wang JL (2013) Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery. Electrochim Acta 103:96–102CrossRefGoogle Scholar
  34. 34.
    Qin LF, Xia YG, Qiu B, Cao HL, Liu Y, Liu ZP (2013) Synthesis and electrochemical performances of (1-x)LiMnPO4∙xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. J Power Sources 239:144–150CrossRefGoogle Scholar
  35. 35.
    Li SS, Su Z, Wang XY (2015) High performance (1-x)LiMnPO4∙xLi3V2(PO4)3/C composite cathode materials prepared by a sol-gel method. RSC Adv 5:80170–80175CrossRefGoogle Scholar
  36. 36.
    Zhang B, Wang XW, Zhang JF (2014) Novel synthesis of LiMnPO4∙Li3V2(PO4)3/C composite cathode material. RSC Adv 4:49123–49127CrossRefGoogle Scholar
  37. 37.
    Bakenov Z, Tanigu chi I (2010) LiMgxMn1-xPO4/C cathodes for lithium batteries prepared by a combination of spray pyrolysis with wet ballmilling. J Electrochem Soc 157:A430–A436CrossRefGoogle Scholar
  38. 38.
    Barker J, Gover RKB, Burns P, Bryan A (2007) The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate. J Electrochem Soc 154(4):A307–A313CrossRefGoogle Scholar
  39. 39.
    Shiratsu chi T, Okada S, Doi T (2009) Cathodic performance of LiMn1-xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere. Electrochem Acta 54:3145–3151CrossRefGoogle Scholar
  40. 40.
    Son JN, Kim GJ, Kim MC, Kim SH, Aravindan V, Lee YG, Lee YS (2013) Carbon coated NASICON type Li3V2-xMx(PO4)3(M = Mn, Fe and Al) materials with enhanced cyclability for Li-Ion batteries. J Electrochem Soc 160:A87–A92CrossRefGoogle Scholar
  41. 41.
    Deng C, Zhang S, Yang Y, Gao Y, Wu B, Ma L, Fu BL, Wu Q, Liu FL (2011) J Phys Chem 115:15048–15056CrossRefGoogle Scholar
  42. 42.
    Ai DJ, Liu KY, Lu ZG, Zou MM, Zeng DQ, Mu J (2011) Aluminothermal synthesis and characterization of Li3V2-xAlx(PO4)3 cathode materials for lithium ion batteries. Electrochemical Acta 56:2823–2827CrossRefGoogle Scholar
  43. 43.
    Cho AR, Son JN, Aravindan V, Kim H, Kang KS, Yoon WS, Kim WS, Lee YS (2012) Carbon supported, Al doped- Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. J Mater Chem 22:6556CrossRefGoogle Scholar
  44. 44.
    Lei ZH, Yang J, He Y (2017) LiMnPO4 center dot Li3V2(PO4)3 composite cathode material derived from Mn(VO3)2 nanosheet precursor. J Alloys Compd 695:1813–1820CrossRefGoogle Scholar
  45. 45.
    Wang CY, Bi YJ, Liu Y et al (2014) Investigation of (1-x)LiMnPO4∙xLi3V2(PO4)3/C: phase composition and electrochemical performance. J Power Sources 263:332–337CrossRefGoogle Scholar
  46. 46.
    Zhang JF, Wang XW, Zhang B (2015) Multicore-shell carbon-coated lithium manganese phosphate and lithium vanadium phosphate composite material with high capacity and cycling performance for lithium-ion battery. Electrochim Acta 169:462–469CrossRefGoogle Scholar
  47. 47.
    Bi YJ, Yang WC, Yang BC (2014) Influence of Li3V2(PO4)3 complexing on the performance of LiMnPO4 based materials utilized in lithium ion battery. Ceram Int 40:7637–7641CrossRefGoogle Scholar
  48. 48.
    Yang G, Ni H, Liu HD, Gao P, Jia HM, Roy S, Pinto J, Jiang E (2011) The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4 (M=Mg, V, Fe, Co, Gd). J Power Sources 196:4747–4755CrossRefGoogle Scholar
  49. 49.
    Deng C, Zhang S, Yang SY, Gao Y, Wu B, Ma L, Fu BL, Wu Q, Liu FL (2011) Effects of Ti and Mg co-doping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries. J Phys Chem C 115:15048–15056CrossRefGoogle Scholar
  50. 50.
    Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6(1):156–183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lijun Dou
    • 1
  • Enshan Han
    • 1
    Email author
  • Ling Li
    • 1
  • Lingzhi Zhu
    • 1
  • Shunpan Qiao
    • 1
  • Hui Liu
    • 1
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations