Advertisement

Ionics

pp 1–9 | Cite as

MnO2 nanowires as precursor synthesis of lithium-rich cathode material with enhanced electrochemical performances

  • QingPeng Zhu
  • Xiao Wang
  • Jinchen Fan
  • Qunjie Xu
  • Yulin Min
Original Paper

Abstract

Lithium-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion battery has been successfully synthesized through combination of co-precipitation and α-MnO2 nanowires as precursor. The X-ray diffraction (XRD) results reveal that the as-obtained material can exhibit well-layered structure and crystallization. The as-prepared sample has been investigated by the scanning electron microscope (SEM) and transmission electron microscopy (TEM). The possible reason for the formation of polyhedron has been presented. The results of electrochemical performance reveal that the as-prepared sample with combination of two methods can provide an initial discharge specific capacity of 247.5 mAh g−1 at 0.2 C within a potential range of 2.0–4.8 V, and this material can also deliver a discharge specific capacity of 181.8 mAh g−1 at 2 C with 97.8% capacity retention after 100 cycles. Hence, it is proposed that combination of two methods might be a promising strategy to prepare electrode cathode materials with improved performance.

Keywords

Batteries Electrochemical promotion 

Notes

Funding information

This work was financially supported by the Shanghai Science and Technology Committee (Grant number 16020500800), Shanghai Natural Science Fund (Grant number 15ZR1418100), and Natural Science Foundation of China (51402187).

Supplementary material

11581_2018_2747_MOESM1_ESM.docx (187 kb)
ESM 1 (DOCX 186 kb)

References

  1. 1.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl 47(16):2930–2946CrossRefGoogle Scholar
  2. 2.
    Nayak PK, Erickson EM, Schipper F, Penki TR, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater 8(8):1702397–1702412CrossRefGoogle Scholar
  3. 3.
    Martha SK, Sclar H, Szmuk Framowitz Z, Kovacheva D, Saliyski N, Gofer Y, Sharon P, Golik E, Markovsky B, Aurbach D (2009) A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. J Power Sources 189(1):248–255CrossRefGoogle Scholar
  4. 4.
    Oishi M, Yamanaka K, Watanabe I, Shimoda K, Matsunaga T, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z, Ohta T (2016) Direct observation of reversible oxygen anion redox reaction in li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy. J Mater Chem A 4(23):9293–9302CrossRefGoogle Scholar
  5. 5.
    Zhang S, Gu H, Tang T, du W, Gao M, Liu Y, Jian D, Pan H (2017) In situ encapsulation of the nanoscale Er2O3 phase to drastically suppress voltage fading and capacity degradation of a Li- and Mn-rich layered oxide cathode for lithium ion batteries. ACS Appl Mater Interfaces 9(39):33863–33875CrossRefGoogle Scholar
  6. 6.
    Wu F, Li Q, Bao L, Zheng Y, Lu Y, Su Y, Wang J, Chen S, Chen R, Tian J (2018) Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochim Acta 260:986–993CrossRefGoogle Scholar
  7. 7.
    Wen X, Liang K, Tian L, Shi K, Zheng J (2018) Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries. Electrochim Acta 260:549–556CrossRefGoogle Scholar
  8. 8.
    Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axelbaum RL (2013) Structural and electrochemical study of Al2O3and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 3(10):1299–1307CrossRefGoogle Scholar
  9. 9.
    Nanda J, Martha SK, Kalyanaraman R (2015) High-capacity electrode materials for electrochemical energy storage: role of nanoscale effects. Pramana 84(6):1073–1086CrossRefGoogle Scholar
  10. 10.
    Yuan X, Xu QJ, Liu X, Liu H, Min Y, Xia Y (2016) Layered cathode material with improved cycle performance and capacity by surface anchoring of TiO2 nanoparticles for Li-ion batteries. Electrochim Acta 213:648–654CrossRefGoogle Scholar
  11. 11.
    Qing R-P, Shi JL, Xiao DD, Zhang XD, Yin YX, Zhai YB, Gu L, Guo YG (2016) Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv Energy Mater 6(6):1501914–1501919CrossRefGoogle Scholar
  12. 12.
    Choi A, Lim J, Kim HJ, Jung SC, Lim HW, Kim H, Kwon MS, Han YK, Oh SM, Lee KT (2018) Site-selective in situ electrochemical doping for Mn-rich layered oxide cathode materials in lithium-ion batteries. Adv Energy Mater 8(11):1702514–1702523CrossRefGoogle Scholar
  13. 13.
    Wang J, Nie P, Xu G, Jiang J, Wu Y, Fu R, Dou H, Zhang X (2018) High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries. Adv Funct Mater 28(4):1704808–1704816CrossRefGoogle Scholar
  14. 14.
    An J, Shi L, Chen G, Li M, Liu H, Yuan S, Chen S, Zhang D (2017) Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J Mater Chem A 5(37):19738–19744CrossRefGoogle Scholar
  15. 15.
    Hu X, Guo H, Peng W, Wang Z, Li X, Hu Q (2018) Effects of Nb doping on the performance of 0.5Li2MnO3 ·0.5LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. J Electroanal Chem 822:57–65CrossRefGoogle Scholar
  16. 16.
    Yuan X, Xu QJ, Liu X, Shen W, Liu H, Xia Y (2016) Excellent rate performance and high capacity of Mo doped layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13 ]O2 derived from an improved coprecipitation approach. Electrochim Acta 207:120–129CrossRefGoogle Scholar
  17. 17.
    Ding W, Cui X, Lei J, Lin X, Zhao S, Wu QH, Zheng M, Dong Q (2018) Hollow spherical lithium-rich layered oxide cathode material with suppressed voltage fading. Electrochim Acta 264:260–268CrossRefGoogle Scholar
  18. 18.
    He X et al (2013) Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res 7(1):110–118CrossRefGoogle Scholar
  19. 19.
    Ma G, Li S, Zhang W, Yang Z, Liu S, Fan X, Chen F, Tian Y, Zhang W, Yang S, Li M (2016) A general and mild approach to controllable preparation of manganese-based micro- and nanostructured bars for high performance lithium-ion batteries. Angew Chem Int Ed Engl 55(11):3667–3671CrossRefGoogle Scholar
  20. 20.
    Yu R, Zhang X, Liu T, Yang L, Liu L, Wang Y, Wang X, Shu H, Yang X (2017) Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 9(47):41210–41223CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Zhang W, Shen S, Yan X, Wu A, Wu R, Zhang J (2017) An ingenious design of lamellar Li1.2Mn0.54Ni0.13Co0.13O2 hollow nanosphere cathode for advanced lithium-ion batteries. Electrochim Acta 256:316–324CrossRefGoogle Scholar
  22. 22.
    Deng YP, Yin ZW, Wu ZG, Zhang SJ, Fu F, Zhang T, Li JT, Huang L, Sun SG (2017) Layered/spinel heterostructured and hierarchical micro/nanostructured Li-rich cathode materials with enhanced electrochemical properties for Li-ion batteries. ACS Appl Mater Interfaces 9(25):21065–21070CrossRefGoogle Scholar
  23. 23.
    Yuan X, Xu QJ, Wang C, Liu X, Liu H, Xia Y (2015) A facile and novel organic coprecipitation strategy to prepare layered cathode material Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 with high capacity and excellent cycling stability. J Power Sources 279:157–164CrossRefGoogle Scholar
  24. 24.
    Nobili F, Croce F, Tossici R, Meschini I, Reale P, Marassi R (2012) Sol–gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J Power Sources 197:276–284CrossRefGoogle Scholar
  25. 25.
    Shaju KM, Bruce PG (2006) Macroporous Li(Ni1/3Co1/3Mn1/3)O2: a high-power and high-energy cathode for rechargeable lithium batteries. Adv Mater 18(17):2330–2334CrossRefGoogle Scholar
  26. 26.
    Lin J, Mu D, Jin Y, Wu B, Ma Y, Wu F (2013) Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80CrossRefGoogle Scholar
  27. 27.
    Zhang S, Gu H, Pan H, Yang S, Du W, Li X, Gao M, Liu Y, Zhu M, Ouyang L, Jian D, Pan F (2017) A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv Energy Mater 7(6):1601066CrossRefGoogle Scholar
  28. 28.
    Ma D, Li Y, Zhang P, Cooper AJ, Abdelkader AM, Ren X, Deng L (2016) Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J Power Sources 311:35–41CrossRefGoogle Scholar
  29. 29.
    Sun Y, Cong H, Zan L, Zhang Y (2017) Oxygen vacancies and stacking faults introduced by low-temperature reduction improve the electrochemical properties of Li2MnO3 nanobelts as lithium-ion battery cathodes. ACS Appl Mater Interfaces 9(44):38545–38555CrossRefGoogle Scholar
  30. 30.
    Deng YP et al (2015) Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A 4(1):257–263CrossRefGoogle Scholar
  31. 31.
    Jiang C, Zou Z (2018) Sheet-like Li1.2Mn0.54Ni0.16Co0.10O2 prepared by glucose-urea bubbling and post-annealing process as high capacity cathode of Li-ion batteries. Electrochim Acta 269:196–203CrossRefGoogle Scholar
  32. 32.
    Shi SJ, Tu JP, Tang YY, Liu XY, Zhang YQ, Wang XL, Gu CD (2013) Enhanced cycling stability of li[Li0.2Mn0.54Ni0.13Co0.13 ]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 88(2):671–679CrossRefGoogle Scholar
  33. 33.
    Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon JM (2013) Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater 12(9):827–835CrossRefGoogle Scholar
  34. 34.
    Wang G, Yi L, Yu R, Wang X, Wang Y, Liu Z, Wu B, Liu M, Zhang X, Yang X, Xiong X, Liu M (2017) Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries. ACS Appl Mater Interfaces 9(30):25358–25368CrossRefGoogle Scholar
  35. 35.
    Zheng F et al (2017) The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 Li-rich layered oxides. J Power Sources 346:31–39CrossRefGoogle Scholar
  36. 36.
    Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed Engl 54(44):13058–13062CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • QingPeng Zhu
    • 1
  • Xiao Wang
    • 1
  • Jinchen Fan
    • 1
    • 2
  • Qunjie Xu
    • 1
    • 2
  • Yulin Min
    • 1
    • 2
  1. 1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghai University of Electric PowerShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Pollution Control and Ecological SecurityShanghaiPeople’s Republic of China

Personalised recommendations