Advertisement

Ionics

, Volume 25, Issue 6, pp 2823–2833 | Cite as

Fabrication of PEI-Fc/SGO multilayer films modified electrode through LBL assembly technique for the detection of dopamine

  • Ning Li
  • Lifei Zheng
  • Fangling Liao
  • Haitao ZhengEmail author
  • Shin-ichiro Suye
Original Paper
  • 71 Downloads

Abstract

In this work, a sensor for the detection of dopamine (DA) based on electroactive polymer (PEI-Fc)/sulfonic acid-functionalized graphene oxide (SGO) multilayer film-modified glassy carbon electrode (GCE) through layer-by-layer (LBL) method was fabricated. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed the successful functionalization of GO into SGO with negatively charged sulfonic groups. The obtained PEI-Fc/SGO multilayer films were characterized using scanning electron microscopy (SEM) and ultravioletvisible spectrometer (UV-Vis). Cyclic voltammetric studies demonstrated that the modified electrode presented enhanced electrocatalytic performance towards DA in terms of peak currents compared with bare GCE. The choronoamperometric results indicated that the modified electrode exhibited a wide linear range from 1 to 695 μM with a low detection limit of 0.255 μM towards the detection of DA. Besides, the modified electrode exhibited good selectivity, excellent reproducibility, and high stability of at least 1 month.

Keywords

PEI-Fc SGO LBL assembly Choronoamperometry Dopamine 

Notes

Acknowledgments

The research was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars (ROCS), Ministry of Education, People’s Republic China.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Numan A, Shahid MM, Omar FS, Ramesh K, Ramesh S (2017) Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensors Actuators B Chem 238:1043–1051CrossRefGoogle Scholar
  2. 2.
    Jin L, Gao X, Wang L, Wu Q, Chen Z, Lin X (2013) Electrochemical activation of polyethyleneimine-wrapped carbon nanotubes/in situ formed gold nanoparticles functionalised nanocomposite sensor for high sensitive and selective determination of dopamine. J Electroanal Chem 692:1–8CrossRefGoogle Scholar
  3. 3.
    Jiang G, Gu X, Jiang G, Chen T, Zhan W, Tian S (2015) Application of a mercapto-terminated binuclear cu(II) complex modified au electrode to improve the sensitivity and selectivity for dopamine detection. Sensors Actuators B Chem 209:122–130CrossRefGoogle Scholar
  4. 4.
    Celebanska A, Tomaszewska D, Lesniewski A, Opallo M (2011) Film electrode prepared from oppositely charged silicate submicroparticles and carbon nanoparticles for selective dopamine sensing. Biosens Bioelectron 26:4417–4422CrossRefGoogle Scholar
  5. 5.
    Wu S, Xiao L, Du Z, Wang H, Yuan Q, Ji H (2017) KOH assisted activation of microwave exfoliated graphite oxide for selective voltammetric determination of dopamine and uric acid in the presence of ascorbic acid. J Electroanal Chem 804:72–77CrossRefGoogle Scholar
  6. 6.
    Zhang YM, Xu PL, Zeng Q, Liu YM, Liao X, Hou MF (2017) Magnetism-assisted modification of screen printed electrode with magnetic multi-walled carbon nanotubes for electrochemical determination of dopamine. Mater Sci Eng C Mater Biol Appl 74:62–69CrossRefGoogle Scholar
  7. 7.
    Wiench P, González Z, Menéndez R, Grzyb B, Gryglewicz G (2018) Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors Actuators B Chem 257:143–153CrossRefGoogle Scholar
  8. 8.
    Tezerjani MD, Benvidi A, Dehghani Firouzabadi A, Mazloum-Ardakani M, Akbari A (2017) Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: simultaneous determination of epinephrine, acetaminophen and dopamine. Measurement 101:183–189CrossRefGoogle Scholar
  9. 9.
    Yang Z, Liu X, Zheng X, Zheng J (2018) Synthesis of au@Pt nanoflowers supported on graphene oxide for enhanced electrochemical sensing of dopamine. J Electroanal Chem 817:48–54CrossRefGoogle Scholar
  10. 10.
    Tan C, Zhang W, Zheng J, You X, Lin X, Li S (2015) Fabrication of metal–organic single crystalline nanowires and reduced graphene oxide enhancement for an ultrasensitive electrochemical biosensor. J Mater Chem B 3:7117–7124CrossRefGoogle Scholar
  11. 11.
    Sroysee W, Chairam S, Amatatongchai M, Jarujamrus P, Tamuang S, Pimmongkol S, Chaicharoenwimolkul L, Somsook E (2018) Poly(m-ferrocenylaniline) modified carbon nanotubes-paste electrode encapsulated in nafion film for selective and sensitive determination of dopamine and uric acid in the presence of ascorbic acid. J Saudi Chem Soc 22:173–182CrossRefGoogle Scholar
  12. 12.
    Wang L, Meng Y, Zhang Y, Zhang C, Xie Q, Yao S (2017) Photoelectrochemical aptasensing of thrombin based on multilayered gold nanoparticle/graphene-TiO2 and enzyme functionalized graphene oxide nanocomposites. Electrochim Acta 249:243–252CrossRefGoogle Scholar
  13. 13.
    Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P (2017) Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor. Sensors Actuators B Chem 246:854–863CrossRefGoogle Scholar
  14. 14.
    Wu Y, Kong Y, Lu K, Lv M, Ye Y, Zhao Y (2017) An easy fabrication of glucose oxidase-dipeptide-reduced graphene oxide nanocomposite for glucose sensing. Mater Res Bull 94:378–384CrossRefGoogle Scholar
  15. 15.
    Ali A, Jamal R, Abdiryim T, Huang X (2017) Synthesis of monodispersed PEDOT/au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid. J Electroanal Chem 787:110–117CrossRefGoogle Scholar
  16. 16.
    Wang Q, Yue H, Zhang J, Gao X, Zhang H, Liu X, Wang B, Bychanok D (2018) Electrochemical determination of uric acid in the presence of ascorbic acid by hybrid of ZnO nanorods and graphene nanosheets. Ionics 24:2499–2507CrossRefGoogle Scholar
  17. 17.
    Yang L, Liu D, Huang J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors Actuators B Chem 193:166–172CrossRefGoogle Scholar
  18. 18.
    Arvand M, Dehsarae M (2018) Amperometric determination of diazinon by gold nanorods/ds-DNA/graphene oxide sandwich-modified electrode. Ionics 24:2445–2454CrossRefGoogle Scholar
  19. 19.
    Rabti A, Mayorga-Martinez CC, Baptista-Pires L, Raouafi N, Merkoçi A (2016) Ferrocene-functionalized graphene electrode for biosensing applications. Anal Chim Acta 926:28–35CrossRefGoogle Scholar
  20. 20.
    Li C, Xiao L, Jiang Z, Tian X, Luo L, Liu W, Xu Z-L, Yang H, Jiang Z-J (2017) Sulfonic acid functionalized graphene oxide paper sandwiched in sulfonated poly(ether ether ketone): a proton exchange membrane with high performance for semi-passive direct methanol fuel cells. Int J Hydrog Energy 42:16731–16740CrossRefGoogle Scholar
  21. 21.
    Saini P, Singh M, Singh SP, Mahapatro AK (2018) Spectroscopic and electronic properties of polyallylamine functionalized graphene oxide films. Vacuum 154:110–114CrossRefGoogle Scholar
  22. 22.
    Gevaerd A, Blaskievicz SF, Zarbin AJG, Orth ES, Bergamini MF, Marcolino-Junior LH (2018) Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection. Biosens Bioelectron 112:108–113CrossRefGoogle Scholar
  23. 23.
    Zhu Q, Bao J, Huo D, Yang M, Wu H, Hou C, Zhao Y, Luo X, Fa H (2017) 3DGH-fc based electrochemical sensor for the simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem 799:459–467CrossRefGoogle Scholar
  24. 24.
    Rabti A, Raouafi N, Merkoçi A (2016) Bio(sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon 108:481–514CrossRefGoogle Scholar
  25. 25.
    Chen Y, Liu X, Wu T, Hou W, Liu M, Zhang Y, Yao S (2018) Enhanced electrochemical sensitivity towards acetaminophen determination using electroactive self-assembled ferrocene derivative polymer nanospheres with multi-walled carbon nanotubes. Electrochim Acta 272:212–220CrossRefGoogle Scholar
  26. 26.
    Zhilei W, Zaijun L, Xiulan S, Yinjun F, Junkang L (2010) Synergistic contributions of fullerene, ferrocene, chitosan and ionic liquid towards improved performance for a glucose sensor. Biosens Bioelectron 25:1434–1438CrossRefGoogle Scholar
  27. 27.
    Bizid S, Blili S, Mlika R, Haj Said A, Korri-Youssoufi H (2018) Direct E-DNA sensor of Mycobacterium tuberculosis mutant strain based on new nanocomposite transducer (fc-ac-OMPA/MWCNTs). Talanta 184:475–483CrossRefGoogle Scholar
  28. 28.
    Zhang D, Ouyang X, Li L, Dai B, Zhang Y (2016) Real-time amperometric monitoring of cellular hydrogen peroxide based on electrodeposited reduced graphene oxide incorporating adsorption of electroactive methylene blue hybrid composites. J Electroanal Chem 780:60–67CrossRefGoogle Scholar
  29. 29.
    Fayemi OE, Adekunle AS, Kumara Swamy BE, Ebenso EE (2018) Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe 3 O 4 nanocomposites on glassy carbon electrode. J Electroanal Chem 818:236–249CrossRefGoogle Scholar
  30. 30.
    Guzman JJL, Pehlivaner Kara MO, Frey MW, Angenent LT (2017) Performance of electro-spun carbon nanofiber electrodes with conductive poly(3,4-ethylenedioxythiophene) coatings in bioelectrochemical systems. J Power Sources 356:331–337CrossRefGoogle Scholar
  31. 31.
    Barsan MM, David M, Florescu M, Tugulea L, Brett CM (2014) A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry 99:46–52CrossRefGoogle Scholar
  32. 32.
    Manzanares-Palenzuela CL, Fernandes EGR, Lobo-Castañón MJ, López-Ruiz B, Zucolotto V (2016) Impedance sensing of DNA hybridization onto nanostructured phthalocyanine-modified electrodes. Electrochim Acta 221:86–95CrossRefGoogle Scholar
  33. 33.
    Gonzalez Z, Ferrari B, Sanchez-Herencia AJ, Caballero A, Morales J (2016) Use of polyelectrolytes for the fabrication of porous NiO films by electrophoretic deposition for supercapacitor electrodes. Electrochim Acta 211:110–118CrossRefGoogle Scholar
  34. 34.
    Oytun F, Kara V, Alpturk O, Basarir F (2017) Fabrication of solution-processable, highly transparent and conductive electrodes via layer-by-layer assembly of functional silver nanowires. Thin Solid Films 636:40–47CrossRefGoogle Scholar
  35. 35.
    Barsan MM, Brett CMA (2016) Recent advances in layer-by-layer strategies for biosensors incorporating metal nanoparticles. TrAC Trends Anal Chem 79:286–296CrossRefGoogle Scholar
  36. 36.
    Zheng J, Wu Y, Deng K, He M, He L, Gao J, Zhang X, Liu Y, Li S, Tang Z (2016) Chirality-discriminated conductivity of metal-amino acid biocoordination polymer nanowires. ACS Nano 10:8564–8570CrossRefGoogle Scholar
  37. 37.
    Xu L, Lv F, Zhang Y, Luan X, Zhang Q, An Q (2012) Interfacial modification of magnetic montmorillonite (MMT) using covalently assembled LbL multilayers. J Phys Chem C 118:20357–20362CrossRefGoogle Scholar
  38. 38.
    da S. Pinto T, Alves LA, de Azevedo Cardozo G, Munhoz VHO, Verly RM, Pereira FV, de Mesquita JP (2017) Layer-by-layer self-assembly for carbon dots/chitosan-based multilayer: morphology, thickness and molecular interactions. Mater Chem Phys 186:81–89CrossRefGoogle Scholar
  39. 39.
    Zhang W, Zheng J, Tan C, Lin X, Hu S, Chen J, You X, Li S (2014) Designed self-assembled hybrid au@CdS core–shell nanoparticles with negative charge and their application as highly selective biosensors. J Mater Chem B 3:217–224CrossRefGoogle Scholar
  40. 40.
    Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314:274–278CrossRefGoogle Scholar
  41. 41.
    Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96:745–750CrossRefGoogle Scholar
  42. 42.
    Qin B, Chen H, Liang H, Fu L, Liu X, Qiu X, Liu S, Song R, Tang Z (2010) Reversible Photoswitchable fluorescence in thin films of inorganic nanoparticle and Polyoxometalate assemblies. J Am Chem Soc 132:2886–2888CrossRefGoogle Scholar
  43. 43.
    Wen Y, Song Y, Jiang G, Zhao D, Ding K, Yuan W, Lin X, Gao H, Jiang L, Xhu D (2010) Crystalline thin films formed by supramolecular assembly for ultrahigh-density data storage. Adv Mater 16:2018–2021CrossRefGoogle Scholar
  44. 44.
    Li M, Ishihara S, Akada M, Liao M, Sang L, Hill J, Krishnan V, Ma Y, Ariga K (2011) Electrochemical-coupling layer-by-layer (ECC-LbL) assembly. J Am Chem Soc 133:7348–7351CrossRefGoogle Scholar
  45. 45.
    Suye S, Matsuura T, Kimura T, Zheng H, Hori T, Amano Y, Katayama H (2005) Amperometric DNA sensor using gold electrode modified with polymerized mediator by layer-by-layer adsorption. Microelectron Eng 81:441–447CrossRefGoogle Scholar
  46. 46.
    Gao N, Chen Y, Jiang J (2013) Ag@Fe2O3-GO nanocomposites prepared by a phase transfer method with long-term antibacterial property. Appl Mater Interfaces 5:11307–11314CrossRefGoogle Scholar
  47. 47.
    Zhao R, Kong W, Sun M, Yang Y, Liu W, Song H, Hao R (2018) Highly stable graphene-based nanocomposite (GO-PEI-ag) with broad-Spectrum, long-term antimicrobial activity and Antibiofilm effects. ACS Appl Mater Interfaces 10:17617–17629CrossRefGoogle Scholar
  48. 48.
    Wang F, Meng H, Guo G, Luo S, Guo R (2017) Methane hydrate formation promoted by −SO3–-coated graphene oxide Nanosheets. ACS Sustain Chem Eng 5:6597–6604CrossRefGoogle Scholar
  49. 49.
    Gahlot S, Sharma P, Kulshrestha V, Jha P (2014) SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl Mater Interfaces 6:5595–5601CrossRefGoogle Scholar
  50. 50.
    Ouyang X, Luo L, Ding Y, Liu B, Xu D, Huang A (2015) Simultaneous determination of uric acid, dopamine and ascorbic acid based on poly (bromocresol green) modified glassy carbon electrode. J Electroanal Chem 748:1–7CrossRefGoogle Scholar
  51. 51.
    Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191CrossRefGoogle Scholar
  52. 52.
    Zhang J, Xu L, Zhou B, Zhu Y, Jiang X (2018) The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine. J Colloid Interface Sci 513:279–286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ning Li
    • 1
  • Lifei Zheng
    • 1
  • Fangling Liao
    • 1
  • Haitao Zheng
    • 1
    Email author
  • Shin-ichiro Suye
    • 2
  1. 1.School of Environmental and Chemical EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.Department of Applied Chemistry and Biotechnology, Graduate School of EngineeringUniversity of FukuiFukuiJapan

Personalised recommendations