, Volume 25, Issue 6, pp 2701–2709 | Cite as

Electrochemical hydrogenation of Mg76Li12Al12 solid solution phase

  • Volodymyr PavlyukEmail author
  • Wojciech Ciesielski
  • Nazar Pavlyuk
  • Damian Kulawik
  • Malgorzata Szyrej
  • Beata Rozdzynska-Kielbik
  • Vasyl Kordan
Original Paper


The electrochemical hydrogenation of Mg-based solid solution phase with Mg76Li12Al12 composition was studied by various electrochemical methods. The Mg76Li12Al12Hx (0 < x < 74) hydride has a hexagonal crystal structure (P-6m2, a = 3.1485(1), c = 5.1111(2) Å) in which the hydrogen atoms insert to octahedral voids. The reversible hydrogen storage capacity of these compounds reached 3.2 wt% H, corresponding to 865 mAh/g. After final charging/discharging cycles, the initial Mg76Li12Al12 solid solution phase was recovered, indicating that the electrochemical reactions are reversible. These observations are confirmed by X-ray powder diffraction (XRPD) method and scanning electron microscopy (SEM).


Alloys Batteries Electrochemistry of materials Solid state electrochemistry 


Funding information

Financial support from the National Science Centre, Poland (no. 2017/25/B/ST8/02179) is gratefully acknowledged.


  1. 1.
    Kadir K, Kuriyama N, Sakai T, Uehara I, Eriksson L (1999) Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9. J Alloys Compd 284:145–154CrossRefGoogle Scholar
  2. 2.
    Kadir K, Sakai T, Uehara I (1999) Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5)(MgCa)Ni9: new phases in the AB2C9 system isostructural with LaMg2Ni9. J Alloys Compd 287:264–270CrossRefGoogle Scholar
  3. 3.
    Kadir K, Sakai T, Uehara I (1997) Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 laves-type layers alternating with AB5 layers. J Alloys Compd 257:115–121CrossRefGoogle Scholar
  4. 4.
    Chen J, Takeshita HT, Tanaka H, Kuriyama N, Sakai T, Uehara I, Haruta M (2000) Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure. J Alloys Compd 302:304–313CrossRefGoogle Scholar
  5. 5.
    Solokha P, Pavlyuk V, Saccone A, De Negri S, Prochwicz W, Marciniak B, Różycka-Sokołowska E (2006) Rare earth-copper-magnesium compounds RECu9Mg2 (RE = Y, La-Nd, Sm–Ho, Yb) with ordered CeNi3-type structure. J Solid State Chem 179:3073–3081CrossRefGoogle Scholar
  6. 6.
    Latroche M, Percheron-Guégan A (2003) Structural and thermodynamic studies of some hydride forming RM3-type compounds (R=lanthanide, M=transition metal). J Alloys Compd 356-357:461–468CrossRefGoogle Scholar
  7. 7.
    Pavlyuk V, Rozycka-Sokolowska E, Marciniak B, Paul-Boncour V, Dorogova M (2011) The structural, magnetic, hydrogenation and electrode properties of REMg2Cu9-xNix alloys (RE=La, Pr,Tb). Cent Eur J Chem 9:1133–1142Google Scholar
  8. 8.
    Crivello JC, Denys RV, Dornheim M, Felderhoff M, Grant DM, Huot J, Jensen TR, de Jongh P, Latroche M, Walker GS, Webb CJ, Yartys VA (2016) Mg-based compounds for hydrogen and energy storage. Appl Phys A Mater Sci Process 122:85–102CrossRefGoogle Scholar
  9. 9.
    Solokha P, De Negri S, Skrobanska M, Saccone A, Pavlyuk V, Proserpio D (2012) New ternary germanides La4Mg5Ge6 and La4Mg7Ge6: crystal structure and chemical bonding. Inorg Chem 51:207–214CrossRefGoogle Scholar
  10. 10.
    De Negri S, Solokha P, Pavlyuk V, Saccone A (2011) The isothermal section of the La-Ag-Mg phase diagram at 400°C. Intermetallics 19:671–681CrossRefGoogle Scholar
  11. 11.
    Gröbner J, Schmid-Fetzer R, Pisch A, Colinet C, Pavlyuk VV, Dmytriv GS, Kevorkov DG, Bodak OI (2002) Phase equilibria, calorimetric study and thermodynamic modeling of Mg-Li-Ca alloys. Thermochim Acta 389:85–94CrossRefGoogle Scholar
  12. 12.
    Vajeeston P, Ravindran P, Kjekshus A, Fjellvag H (2008) First-principles investigations of the MMgH3 (M=Li, Na, K, Rb, Cs) series. J Alloy Compd 450:327–337CrossRefGoogle Scholar
  13. 13.
    Fichtner M, Engel J, Fuhr O, Glöss A, Rubner O, Ahlrichs R (2003) The structure of magnesium alanate. Inorg Chem 42:7060–7066CrossRefGoogle Scholar
  14. 14.
    Bulychev BM, Semenenko KN, Bitsoev KB (2009) “One-step” synthesis of nonsolvated aluminum hydride. Russ Chem Bull 58:1817–1823CrossRefGoogle Scholar
  15. 15.
    Tang X, Opalka SM, Laube BL, Wu FJ, Strickler JR, Anton DL (2007) Hydrogen storage properties of Na–Li–Mg–Al–H complex hydrides. J Alloys Compd 446–447:228–231CrossRefGoogle Scholar
  16. 16.
    Zhong HC, Wang H, Ouyang LZ (2014) Improving the hydrogen storage properties of MgH2 by reversibly forming Mg–Al solid solution alloys. Int J Hydrog Energy 39:3320–3326CrossRefGoogle Scholar
  17. 17.
    Niessen RAH, Notten PHL (2005) Electrochemical hydrogen storage characteristics of thin film MgX (X = Sc, Ti, V, Cr) compounds. Electrochem Solid-State Lett 8:A534–A538CrossRefGoogle Scholar
  18. 18.
    Niessen RAH, Notten PHL (2005) Hydrogen storage in thin film magnesium–scandium alloys. J Alloys Compd 404–406:457–460CrossRefGoogle Scholar
  19. 19.
    Kalisvaart WP, Niessen RAH, Notten PHL (2006) Electrochemical hydrogen storage in MgSc alloys: a comparative study between thin films and bulk materials. J Alloys Compd 417:280–291CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69CrossRefGoogle Scholar
  21. 21.
    Sheldrick GM (1997) SHELX, program for the solution of crystal structures. University of Goettingen, GoettingenGoogle Scholar
  22. 22.
    Padezhnova EM, Mel’nik EV, Guzey LS, Guseva LN (1976) Phase equilibria in Mg-Li-Al at 300° C. Russ Metall (Engl Transl) 4:191–193Google Scholar
  23. 23.
    Reilly JJ, Adzic GD, Johnson JR, Vogt T, Mukerjee S, McBreen J (1999) The correlation between composition and electrochemical properties of metal hydride electrodes. J Alloys Compd 293-295:569–582CrossRefGoogle Scholar
  24. 24.
    Dymek M, Rozdzynska-Kielbik B, Pavlyuk VV, Bala H (2015) Electrochemical hydrogenation properties of LaNi4.6Zn0.4-xSnx alloys. J. Alloys Compd 644:916–922CrossRefGoogle Scholar
  25. 25.
    Stetskiv A, Rozdzynska-Kielbik B, Kowalczyk G, Prochwicz W, Siemion P, Pavlyuk V (2014) The structural and thermal stability, electrochemical hydrogenation and corrosion behavior of LaT5-xMx (T = Co, Ni and M = Al, Ge, Li) phases. Solid State Sci 38:35–41CrossRefGoogle Scholar
  26. 26.
    Meifeng H, Hao W, Kunguang Z, Deng P, Fang L (2018) Effects of Li addition on the corrosion behaviour and biocompatibility of Mg(Li)–Zn–Ca metallic glasses adding Li significantly improves the corrosion resistance of Mg–Li–Zn–Ca alloys. J Mater Sci 53:9928–9942CrossRefGoogle Scholar
  27. 27.
    Niskanen P, Sanders TH, Rinke JG, Marek M (1982) Corrosion of aluminum alloys containing lithium. Corros Sci 22:283–304CrossRefGoogle Scholar
  28. 28.
    Guseinov GD, Ismailov MZ, Guseinov GG (1967) On the new semiconducting compound CdTlS2. Mater Res Bull 2:765–772CrossRefGoogle Scholar
  29. 29.
    Pavlyuk V, Kulawik D, Ciesielski W, Pavlyuk N, Dmytriv G (2018) New quaternary carbide Mg1.52Li0.24Al0.24C0.86 as a disorder derivative of the family of hexagonal close-packed (hcp) structures and the effect of structure modification on the electrochemical behaviour of the electrode. Acta Crystallogr C 74:360–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Volodymyr Pavlyuk
    • 1
    • 2
    Email author
  • Wojciech Ciesielski
    • 2
  • Nazar Pavlyuk
    • 1
  • Damian Kulawik
    • 2
  • Malgorzata Szyrej
    • 2
  • Beata Rozdzynska-Kielbik
    • 2
  • Vasyl Kordan
    • 1
  1. 1.Institute of Chemistry, Environmental Protection and BiotechnologyCzęstochowa Jan Długosz UniversityCzęstochowaPoland
  2. 2.Department of Inorganic ChemistryIvan Franko Lviv National UniversityLvivUkraine

Personalised recommendations