Advertisement

Ionics

pp 1–7 | Cite as

Fabrication of Ag2S electrode for CO2 reduction in organic media

  • Feng-xia Shen
  • Jin Shi
  • Feng Shi
  • Tian-you Chen
  • Yun-fei Li
  • Qing-yuan Li
  • Yong-nian Dai
  • Bin Yang
  • Tao Qu
Original Paper
  • 47 Downloads

Abstract

Electro-reduction of carbon dioxide (CO2) to carbon monoxide (CO) has been extensively studied on metal and alloy electrodes for many decades. However, owing to their disadvantages of low current density and high over-potential, the practical application of these electrodes has been limited. Hence, it is highly desirable to explore new and high efficient electrode for CO2 reduction to CO. Ag2S has been widely studied as electrode material in electrochemistry due to its unique properties, such as high conductivity, chemical stability, and easy to be prepared. In this work, we have fabricated an Ag2S electrode via electro-oxidation of Ag in aqueous solution. X-ray diffraction (XRD) and scanning electron microscope (SEM) confirm that Ag2S has been modified on Ag foil, which made the electrode surface roughness. And then, we have evaluated the performance of Ag2S electrode as the cathode for CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate. The cathodic current density reaches to 9.85 mA/cm2, with the faradic efficiency for CO formation remaining stable at 92% during 4 h long-term electrolysis.

Keywords

CO2 electro-reduction Organic electrolyte Ag2S electrode 

Notes

Funding information

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC 51164020, 51062009), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Analysis and Testing Foundation of Kunming University of Science and Technology (20152102004, 20060130), and Free Exploration Fund for Academician of Chinese Academy of Engineering in Yunnan (2017HA006).

References

  1. 1.
    Shen J, Kolb MJ, Göttle AJ, Koper MT (2016) DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J Phys Chem C 120:15714–15721CrossRefGoogle Scholar
  2. 2.
    Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FP, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH (2016) Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537:382–386CrossRefGoogle Scholar
  3. 3.
    Hu B, Guild C, Suib SL (2013) Corrigendum to “Thermal, electrochemical and photochemical conversion of CO2 to fuels and value-added products”. J CO2 Util 2:18–27Google Scholar
  4. 4.
    Ramakrishnan S, Chidsey CED (2017) Initiation of the electrochemical reduction of CO2 by a singly reduced ruthenium(II) bipyridine complex. Inorg Chem 56:8326–8333CrossRefGoogle Scholar
  5. 5.
    Yang D-w, Li Q-y, Shen F-x, Wang Q, Li L, Song N, Dai Y-n, Shi J (2016) Electrochemical impedance studies of CO2 reduction in ionic liquid/organic solvent electrolyte on Au electrode. Electrochim Acta 189:32–37CrossRefGoogle Scholar
  6. 6.
    Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K (2016) Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal 6:2842–2851CrossRefGoogle Scholar
  7. 7.
    Cheng T, Xiao H, Goddard WA (2016) Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298K from quantum mechanics free energy calculations with explicit water. J Am Chem Soc 138:13802–13805CrossRefGoogle Scholar
  8. 8.
    Wang F, Cao B, To W-P, Tse C-W, Li K, Chang X-Y, Zang C, Chan SL-F, Che C-M (2016) The effects of chelating N4 ligand coordination on Co(ii)-catalysed photochemical conversion of CO2 to CO: reaction mechanism and DFT calculations. Catal Sci Technol 6:7408–7420CrossRefGoogle Scholar
  9. 9.
    Choi SY, Jeong SK, Kim HJ, Baek I-H, Park KT (2016) Electrochemical reduction of carbon dioxide to formate on Tin–Lead alloys. ACS Sustain Chem Eng 4:1311–1318CrossRefGoogle Scholar
  10. 10.
    H. Y, Electrochemical CO2 reduction on metal electrodes. Springer New York (2008) 89–189Google Scholar
  11. 11.
    Catriona O’Sullivan, Robert D. Gunning, Ambarish Sanyal, Christopher A. Barrett, Hugh Geaney, Fathima R. Laffir, Shafaat Ahmed, K. M. Ryan, [11] Spontaneous room temperature elongation of CdS and Ag2S nanorods via oriented attachment. J Am Chem Soc 131 (2009) 12250–12257Google Scholar
  12. 12.
    Fan W, Jewell S, She Y, Leung MK (2014) In situ deposition of Ag-Ag2S hybrid nanoparticles onto TiO2 nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties. Phys Chem Chem Physics: PCCP 16:676–680CrossRefGoogle Scholar
  13. 13.
    Bozanic DK, Djokovic V, Blanusa J, Nair PS, Georges MK, Radhakrishnan T (2007) Preparation and properties of nano-sized Ag and Ag2S particles in biopolymer matrix. Eur Phys J E 22:51–59CrossRefGoogle Scholar
  14. 14.
    Li P, Li Z, Zhang L, Shi E, Shang Y, Cao A, Li H, Jia Y, Wei J, Wang K, Zhu H, Wu D (2012) Bubble-promoted assembly of hierarchical, porous Ag2S nanoparticle membranes. J Mater Chem 22:24721CrossRefGoogle Scholar
  15. 15.
    Basu M, Nazir R, Mahala C, Fageria P, Chaudhary S, Gangopadhyay S, Pande S (2017) Ag2S/Ag Heterostructure: a promising electrocatalyst for the hydrogen evolution reaction. Langmuir 33:3178–3186CrossRefGoogle Scholar
  16. 16.
    Adams N W H, K. J. R., Potentiometric determination of silver thiolate formation constants using a Ag2S electrode. Pdf>, Aquat Geochem 5 (1999) 1–11Google Scholar
  17. 17.
    Eckert W (1998) Electrochemical identification of the hydrogen sulfide system using a pH2S (glass/Ag°, Ag2S) electrode. J Electrochem Soc 1:77–79Google Scholar
  18. 18.
    Izutsu K, Kolthoff IM, Fujinaga T, Hattori M, Chantooni MK (1977) Acid-base equilibria of some acids in propylene carbonate.Pdf>. Anal Chem 49:503–508CrossRefGoogle Scholar
  19. 19.
    Murrieta-Guevara F, Trejo A (1984) Solubility of carbon dioxide, hydrogen sulfide and methane in pure and mixed solvents. J Chem Eng Data 29:456–460CrossRefGoogle Scholar
  20. 20.
    Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJ, RI M (2011) Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science (New York, N.Y.) 334:643–644CrossRefGoogle Scholar
  21. 21.
    Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580CrossRefGoogle Scholar
  22. 22.
    Wang Y, Hatakeyama M, Ogata K, Wakabayashi M, Jin F, Nakamura S (2015) Activation of CO2 by ionic liquid EMIM-BF4 in the electrochemical system: a theoretical study. Phys Chem Chem Phys: PCCP 17:23521–23531CrossRefGoogle Scholar
  23. 23.
    Neubauer SS, Schmid B, Reller C, Guldi DM, Schmid G (2017) Alkalinity initiated decomposition of mediating imidazolium ions in high current density CO2 electrolysis. Chem Electro Chem 4:160–167Google Scholar
  24. 24.
    Oh Y, Hu X (2013) Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. Chem Soc Rev 42:2253–2261CrossRefGoogle Scholar
  25. 25.
    House HO, Feng E, Peet NP (1971) A comparison of various tetraalkylammonium salts as supporting electrolytes in organic electrochemical reactions. J Org Chem 36:2371–2375CrossRefGoogle Scholar
  26. 26.
    Shi J, Shi F, Song N, Liu J-X, Yang X-K, Jia Y-J, Xiao Z-W, Du P (2014) A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte. J Power Sources 259:50–53CrossRefGoogle Scholar
  27. 27.
    Andrews E, Katla S, Kumar C, Patterson M, Sprunger P, Flake J (2015) Electrocatalytic reduction of CO2 at Au nanoparticle electrodes: effects of interfacial chemistry on reduction behavior. J Electrochem Soc 162:F1373–F13F8CrossRefGoogle Scholar
  28. 28.
    Shi J, Li Q-Y, Shi F, Song N, Jia Y-J, Hu Y-Q, Shen F-x, Yang D-w, Dai Y-N (2016) Design of a two-compartment electrolysis cell for the reduction of CO2 to CO in tetrabutylammonium perchlorate/propylene carbonate for renewable electrical energy storage. J Electrochem Soc 163:G82–GG7CrossRefGoogle Scholar
  29. 29.
    Shi J, Shen F-x, Shi F, Song N, Jia Y-J, Hu Y-Q, Li Q-Y, Liu J-x, Chen T-Y, Dai Y-N (2017) Electrochemical reduction of CO2 into CO in tetrabutylammonium perchlorate/propylene carbonate: water effects and mechanism. Electrochim Acta 240:114–121CrossRefGoogle Scholar
  30. 30.
    Fang Y-H, Liu Z-P (2014) Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. ACS Catal 4:4364–4376CrossRefGoogle Scholar
  31. 31.
    Shaharun MS, Mukhtar H, Yusup S, Dutta BK (2008) Kinetics of hydroformylation of higher olefins using rhodiumphosphite catalyst in a thermomorphic solvent system. Aiche Meeting 1:1–9Google Scholar
  32. 32.
    Mosher BW, Czepiel PC, Shorter J, Allwine E, Harriss RC, Kolb C, Lamb B (1996) Mitigation of methane emissions at landfill sites in New England, USA. Energy Convers Manag 37:1093–1098CrossRefGoogle Scholar
  33. 33.
    Shen F-X, Shi J, Chen T-Y, Shi F, Li Q-Y, Zhen J-Z, Li Y-F, Dai Y-N, Yang B, Qu T (2018) Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate. J Power Sources 378:555–561CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Feng-xia Shen
    • 1
  • Jin Shi
    • 1
  • Feng Shi
    • 2
  • Tian-you Chen
    • 1
  • Yun-fei Li
    • 1
  • Qing-yuan Li
    • 1
  • Yong-nian Dai
    • 1
  • Bin Yang
    • 1
  • Tao Qu
    • 1
  1. 1.State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, College of Metallurgy and Energy Engineering, The National Engineering Laboratory for Vacuum MetallurgyKunming University of Science and TechnologyKunmingChina
  2. 2.Department of Electrical Engineering and Renewable Energy EngineeringOregon Institute of TechnologyKlamath FallsUSA

Personalised recommendations