Advertisement

Ionics

pp 1–4 | Cite as

Study of the dynamics of lattice of copper selenide by the NMR method

  • N. N. Bikkulova
  • K. N. Mikhalev
  • R. A. Yakshibaev
  • G. R. Akmanova
  • L. V. Tsygankova
  • A. R. Kurbangulov
  • A. Kh. Kutov
  • A. V. Bikkulova
Original Paper
  • 11 Downloads

Abstract

The article presents the results of investigations of copper selenide Cu1.75Se using the NMR method. The 77Se NMR spectrum for Cu1.75Se is a single line with full width at half maximum (FWHM) of 4 kHz at the temperature of 250 K. Within the temperature range of 200–450 K, the rates of transverse and longitudinal relaxation are equal. This phenomenon is mainly typical of a liquid, where the homonuclear dipole-dipole interaction is effectively averaged due to the Brownian motion of molecules. In this case, the main mechanism that averages the dipole-dipole interaction is the motion of copper ions. Below 200 K, copper ions are partially localized due to the phase transition, and the behavior of the spin-spin and spin-lattice relaxation rates (as well as their values) are different.

Keywords

Copper selenide Superionic conductor NMR Nonstoichiometric composition Ionic conductivity Phase transitions Activation energy Crystal structure Lattice dynamics Phonon spectrum Low-energy modes 

Notes

Funding information

This work was supported by the Russian State Program (issue “Spin”, No. AAA-A18-118020290104-2). K.N. Mikhalev acknowledges the partial support of the project of the Ural Branch of RAS (No. 18-10-2-37), grant of the Russian Foundation for Fundamental Research (No. 18-32-00675).

References

  1. 1.
    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ (2012) Copper ion liquid-like thermoelectrics. Nat Mater 11(5):422–425.  https://doi.org/10.1038/nmat3273 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bulat LP, Osvensky VB, Ivanov AA, Sorokin AI, Pshenay-Severin DA, Bublik VT, Tabachkova NI, Panchenko VP, Lavrentiev MG (2017) Experimental and theoretical studies of thermoelectric properties of copper selenide. Physics and technology of semiconductors 51(7):892–895.  https://doi.org/10.21883/FTP.2017.07.44635.21 CrossRefGoogle Scholar
  3. 3.
    Ischikawa I, Мiyatani S (1977) Electronic and ionic conduction in Cu2−αSe, Cu2−αS, Cu2−α S, Se. J Phys Soc Jpn 4–2(1):159–167CrossRefGoogle Scholar
  4. 4.
    Yakshibaev RA, Konev VN, Balapanov MH (1984) Ionic conductivity and diffusion in the superionic conductor α-Cu2−αSe. Solid State Phys 26:3641–3645Google Scholar
  5. 5.
    Kadrgulov RF, Livshits AI, Yakshibaev RA (1992) Structural features and diffusive motion of copper ions in Ag2Se-Cu2Se superionic conducting alloys from NMR data. Phys Solid State 34:2143–2147Google Scholar
  6. 6.
    Yakshibaev RA (1978) Investigation of the phenomena of the transport of ions and electrons in copper and silver chalcogenides in the process of reaction diffusion: Author's Abstract of Cand. Phys.-Math. Sverdlovsk 17 pGoogle Scholar
  7. 7.
    Gorbunov VA (1986) Ionic transport in single crystals of nonstoichiometric compounds Cu2−xX (X = S, Se): Autoref ... Cand. fiz.-mat.nauk. Sverdlovsk, 16 ppGoogle Scholar
  8. 8.
    Vucic Z, Horvatic V, Milat O, Ogorelec Z (1982) Influence of the cation disordering on the electronic conductivity of superionic copper selenide. J Solid State Phys 15:3539–3546CrossRefGoogle Scholar
  9. 9.
    Oliveria M, Mcmullan RK, Wuensch BJ (1985) Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α–Cu2−xS, α–Cu2−xSe and α-Ag2Se. Solid State Ionics 28-30:1332–1337CrossRefGoogle Scholar
  10. 10.
    Ralfs P (1936) Uber die Kubischen Hochtemperaturmodifikation der Sulfide Selenide und Telluride des Silbers und einwerfigen Kupfers. Z Phys Chem B 31(3):157–178Google Scholar
  11. 11.
    Borchert W (1945) Gitterumwandlungen im system Cu2−xSe. Z Kristallogr 106:5–24.  https://doi.org/10.1524/zkri.1945.106.1.5 CrossRefGoogle Scholar
  12. 12.
    Heuding RD (1966) The copper/selenium system. Can J Chem 44:1233–1236CrossRefGoogle Scholar
  13. 13.
    Ogorelic Z, Mestnik B, Devcic D (1972) Crystal structure of superionic copper selenide. J Mater Sci 7(8):967–969CrossRefGoogle Scholar
  14. 14.
    Неуding RD, Murray RM (1976) The crystal structures of Cu1.8Se, Cu3Se2, α- and γCuSe, CuSe2 and CuSe2II. Can J Chem 54:842–848Google Scholar
  15. 15.
    Yamamoto K, Kashida S (1991) X-ray study of the average structures of Cu2Se and Cu1.8Se in the room temperature and high temperature phases. J Solid State Chem 93:202–211CrossRefGoogle Scholar
  16. 16.
    Boettcher A, Haase G, Treupel H (1955) Untersuchungen uber die Strukturen und die Strukturumwandlungen der Sulfide and Selenide des Silbers und des Kupfers. Z Physik 7:478–487Google Scholar
  17. 17.
    Marimoto N, Uchimizu M (1969) In: Berry LG (ed) X-Ray powder data file 19-401. Special Technical Publications 480G ASTM, PhiladelphiaGoogle Scholar
  18. 18.
    Milat O, Vucic Z (1987) Superstructural ordering in low-temperature phase of superionic Cu2Se. Solid State Ionics 23:37–47CrossRefGoogle Scholar
  19. 19.
    Kashida S, Akai J (1988) X-ray diffraction and electron microscopy studies of the room-temperature structure of Cu2Se. J Phys C Solid State Phys 21(31):5329–5336CrossRefGoogle Scholar
  20. 20.
    Okada Y (2000) Crystal structure of the low-temperature phase of β Cu1.75Se analysed by electron diffraction. J Electron Microsc 49(1):25–29CrossRefGoogle Scholar
  21. 21.
    Ohtani T (1998) Physical properties and phase transitions of β-Cu2−xSe (0.20≤x≤0.25). J Alloys Compd 279:136–141CrossRefGoogle Scholar
  22. 22.
    Bikkulova NN, Stepanov YM, Bikkulova LV, Kurbangulov AR, Kutov AK, Karagulov RF (2013) Diffuse phase transition from the superionic to non-superionic state in Cu1.8Se single crystal. Crystallogr Rep 58:603–608.  https://doi.org/10.1134/S1063774513040068 CrossRefGoogle Scholar
  23. 23.
    Danilkin SA, Skomorochov AN, Hoser A, Fuess H, Rajevas V, Bickulova NN (2003) Crystal structure and lattice dynamics of superionic copper selenide Cu2−δSe. J Alloys Compd 361:57–61.  https://doi.org/10.1016/S0925-8388(03)00439-0 CrossRefGoogle Scholar
  24. 24.
    Aliev SA, Aliev FF, Gasanov ZS (1998) Thermodynamic parameters of diffuse phase transitions in Ag2Te. Phys Solid State 40:1693–1697.  https://doi.org/10.1134/1.1130593 CrossRefGoogle Scholar
  25. 25.
    Sirusi AA, Ballikaya S, Uher C, Ross JH Jr (2015) Low-temperature structure and dynamics in Cu2Se. J Phys Chem 120:3229–3234.  https://doi.org/10.1021/acs.jpcc.5b06079 CrossRefGoogle Scholar
  26. 26.
    Sirusi AA, Page A, Uher C, Ross JH (2017) NMR study of vacancy and structure-induced changes in Cu2−xTe. J Phys Chem 106:52–57.  https://doi.org/10.1016/j.jpcs.2017.02.016 CrossRefGoogle Scholar
  27. 27.
    Kanashiro T, Ohno T, Satoh M, Okamoto K, Kojima A, Akao F (1981) Nuclear magnetic resonance and electrical conduction of copper chalcogenides. Solid State Ionics 3–4:327–330.  https://doi.org/10.1016/0167-2738(81)90107-7 CrossRefGoogle Scholar
  28. 28.
    Shi C, Xi X, Hou Z, Liu E, Wang W, Jin S, Wu Y, Wu G (2016) Atomic-level characterization of dynamics of copper ions in CuAgSe. J Phys Chem 120:3229–3234.  https://doi.org/10.1016/0167-2738(81)90107-7 CrossRefGoogle Scholar
  29. 29.
    Farrar TC, Becker ЕD (1971) Pulse and Fourier transform NMR: introduction to theory and methods. Academic Press, New York 115 pGoogle Scholar
  30. 30.
    Asylgushina GN, Bikkulova NN, Titova SG, Kochubey DI (2005) Interaction between crystal lattice and mobile ions in copper selenides studies by EXAFS spectroscopy. Nucl Inst Methods Phys Res A 543:194–195.  https://doi.org/10.1016/j.nima.2005.01.170 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. N. Bikkulova
    • 1
  • K. N. Mikhalev
    • 2
  • R. A. Yakshibaev
    • 3
  • G. R. Akmanova
    • 3
  • L. V. Tsygankova
    • 1
  • A. R. Kurbangulov
    • 1
  • A. Kh. Kutov
    • 1
  • A. V. Bikkulova
    • 4
  1. 1.Sterlitamak branch of the Bashkir State UniversitySterlitamakRussian Federation
  2. 2.Institute of Metal PhysicsBranch of the Russian Academy of SciencesYekaterinburgRussian Federation
  3. 3.Bashkir State UniversityUfaRussian Federation
  4. 4.Moscow State UniversityMoscowRussian Federation

Personalised recommendations