Advertisement

Ionics

, Volume 25, Issue 2, pp 541–549 | Cite as

Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application

  • N. C. Su
  • S. A. M. NoorEmail author
  • M. F. Roslee
  • N. S. Mohamed
  • A. Ahmad
  • M. Z. A. Yahya
Original Paper
  • 53 Downloads

Abstract

The increasing energy demand on available global lithium resources has created concerns on development of new and advanced sustainable energy sources. Sodium-based batteries have emerged as promising substitutions to Li-based batteries. We describe here sodium trifluoromethanesulfonate (NaCF3SO3) electrolyte system based on tetraethylene glycol dimethyl ether (tetraglyme). The ionic conductivity of the electrolytes showed a maximum value of 1.6 mS cm−1 for 40 mol% of NaCF3SO3 at room temperature and increased up to of 9.5 mS cm−1 at 373 K. The system showed the anodic stability of the electrolytes up to ca. 5.2 V (Na+/Na) and facile deposition of sodium began at relatively low overpotential, around − 0.01 V vs. Na+/Na, which showed a good reversibility of the electrolytes. Preliminary tests of the electrolyte in half sodium-ion cells employing Na3V2(PO4)3 as cathode electrodes were performed and the cells delivered capacity of 74 mAh g−1 at C/10.

Keywords

Sodium trifluromethanesulfonate Tetraglyme Electrochemical properties Sodium battery 

Notes

Acknowledgments

The authors are grateful to the Battery Laboratory in Solar Energy Research Institute, UKM for battery testing facilities.

Funding

This study was financially supported by the Malaysian Ministry of Higher Education via FRGS/1/2015/SG06/UPNM/03/2.

References

  1. 1.
    Di Lecce D, Carbone L, Gancitano V, Hassoun J (2016) Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes. J Power Sources 334:146–153CrossRefGoogle Scholar
  2. 2.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  3. 3.
    Best A, Bhatt A, Hollenkamp A (2010) Ionic Liquids with the Bis(fluorosulfonyl)imide Anion: Electrochemical Properties and Applications in Battery Technology. J Electrochem Soc 157:A903CrossRefGoogle Scholar
  4. 4.
    Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. J Electrochem Soc 151:A209CrossRefGoogle Scholar
  5. 5.
    Wieczorek W, Raducha D, Zalewska A, Stevens JR (1998) Effect of Salt Concentration on the Conductivity of PEO-Based Composite Polymeric Electrolytes. J Phys Chem B 102:8725–8731CrossRefGoogle Scholar
  6. 6.
    Magistris A, Mustarelli P, Quartarone E, Tomasi C (2000) Solid State Ionics 136:1241CrossRefGoogle Scholar
  7. 7.
    Albinsson I, Mellander B-E, Stevens J (1991) Ionic conductivity in poly(ethylene oxide) modified poly(dimethylsiloxane) complexed with lithium salts. Polymer 32:2712–2715CrossRefGoogle Scholar
  8. 8.
    Senthilkumar ST, Bae H, Han J, Kim Y (2018) Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery. Angew Chem Int Ed 57:5335–5339CrossRefGoogle Scholar
  9. 9.
    Ferry A, Doeff MM, De Jonghe LC (1998) Transport Property and Raman Spectroscopic Studies of the Polymer Electrolyte System P(EO)[sub n]-NaTFSI. J Electrochem Soc 145:1586CrossRefGoogle Scholar
  10. 10.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884CrossRefGoogle Scholar
  11. 11.
    Moreno JS, Armand M, Berman M, Greenbaum S, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization. J Power Sources 248:695–702CrossRefGoogle Scholar
  12. 12.
    Boschin A, Johansson P (2015) Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries. Electrochim Acta 175:124–133CrossRefGoogle Scholar
  13. 13.
    Elia GA, Bernhard R, Hassoun J (2015) A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid. RSC Adv 5:21360–21365CrossRefGoogle Scholar
  14. 14.
    Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns E (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89:219–226CrossRefGoogle Scholar
  15. 15.
    Mandai T, Yoshida K, Tsuzuki S, Nozawa R, Masu H, Ueno K, Dokko K, Watanabe M (2015) Effect of Ionic Size on Solvate Stability of Glyme-Based Solvate Ionic Liquids. J Phys Chem B 119:1523–1534CrossRefGoogle Scholar
  16. 16.
    Johansson P, Ratner MA, Shriver DF (2001) The Influence of Inert Oxide Fillers on Poly(ethylene oxide) and Amorphous Poly(ethylene oxide) Based Polymer Electrolytes†. J Phys Chem B 105:9016–9021CrossRefGoogle Scholar
  17. 17.
    Tsuzuki S, Mandai T, Suzuki S, Shinoda W, Nakamura T, Morishita T, Ueno K, Seki S, Umebayashi Y, Dokko K (2017) Effect of the cation on the stability of cation–glyme complexes and their interactions with the [TFSA]−anion. Phys Chem Chem Phys 19:18262–18272CrossRefGoogle Scholar
  18. 18.
    Tuerxun F, Abulizi Y, NuLi Y, Su S, Yang J, Wang J (2015) High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. J Power Sources 276:255–261CrossRefGoogle Scholar
  19. 19.
    Terada S, Mandai T, Suzuki S, Tsuzuki S, Watanabe K, Kamei Y, Ueno K, Dokko K, Watanabe M (2016) Thermal and Electrochemical Stability of Tetraglyme–Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability. J Phys Chem C 120:1353–1365CrossRefGoogle Scholar
  20. 20.
    Terada S, Susa H, Tsuzuki S, Mandai T, Ueno K, Umebayashi Y, Dokko K, Watanabe M (2016) Dissociation and Diffusion of Glyme-Sodium Bis(trifluoromethanesulfonyl)amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries. J Phys Chem C 120:23339–23350CrossRefGoogle Scholar
  21. 21.
    Aguilera L, Xiong S, Scheers J, Matic A (2015) A structural study of LiTFSI–tetraglyme mixtures: From diluted solutions to solvated ionic liquids. J Mol Liq 210:238–242CrossRefGoogle Scholar
  22. 22.
    Hyun J-K, Dong H, Rhodes CP, Frech R, Wheeler RA (2001) Molecular Dynamics Simulations and Spectroscopic Studies of Amorphous Tetraglyme (CH3O(CH2CH2O)4CH3) and Tetraglyme:LiCF3SO3Structures. J Phys Chem B 105:3329–3337CrossRefGoogle Scholar
  23. 23.
    Choquette Y, Brisard G, Parent M, Brouillette D, Perron G, Desnoyers JE, Armand M, Gravel D, Slougui N (1998) Sulfamides and Glymes as Aprotic Solvents for Lithium Batteries. J Electrochem Soc 145:3500CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Ma L, Zhang L, Peng Z (2016) Identifying a Stable Counter/Reference Electrode for the Study of Aprotic Na–O2Batteries. J Electrochem Soc 163:A1270–A1274CrossRefGoogle Scholar
  25. 25.
    Marinaro M, Theil S, Jörissen L, Wohlfahrt-Mehrens M (2013) New insights about the stability of lithium bis(trifluoromethane)sulfonimide-tetraglyme as electrolyte for Li–O2 batteries. Electrochim Acta 108:795–800CrossRefGoogle Scholar
  26. 26.
    Ardel G, Golodnitsky D, Freedman K, Peled E, Appetecchi G, Romagnoli P, Scrosati B (2002) Rechargeable lithium/hybrid-electrolyte/pyrite battery. J Power Sources 110:152–162CrossRefGoogle Scholar
  27. 27.
    Lee D-J, Park J-W, Hasa I, Sun Y-K, Scrosati B, Hassoun J (2013) Alternative materials for sodium ion–sulphur batteries. J Mater Chem A 1:5256CrossRefGoogle Scholar
  28. 28.
    Amarasinghe K, Senaviratne V, Bandara L, Dissanayake M (2014) Electrical and FT-IR study of fumed silica based gel electrolytes; (TETRAGLYME)nKI and (ethylene glycol)nKI. Proceedings of th 14th Asian Conference on Solid State Ionics (ACSSI 2014) 512–521Google Scholar
  29. 29.
    Kumar R, Sharma JP, Sekhon S (2005) FTIR study of ion dissociation in PMMA based gel electrolytes containing ammonium triflate: Role of dielectric constant of solvent. Eur Polym J 41:2718–2725CrossRefGoogle Scholar
  30. 30.
    Suthanthiraraj SA, Kumar R, Paul BJ (2009) FT-IR spectroscopic investigation of ionic interactions in PPG 4000: AgCF3SO3 polymer electrolyte. Spectrochim Acta A Mol Biomol Spectrosc 71:2012–2015CrossRefGoogle Scholar
  31. 31.
    Noor S, Ahmad A, Talib I, Rahman MYA (2011) Effect of ZnO nanoparticles filler concentration on the properties of PEO-ENR50-LiCF3SO3 solid polymeric electrolyte. Ionics 17:451–456CrossRefGoogle Scholar
  32. 32.
    Ramesh S, Yuen TF, Shen CJ (2008) Conductivity and FTIR studies on PEO–LiX [X: CF3SO3−, SO42−] polymer electrolytes. Spectrochim Acta A Mol Biomol Spectrosc 69:670–675CrossRefGoogle Scholar
  33. 33.
    Shin J-H, Henderson WA, Passerini S (2003) Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5:1016–1020CrossRefGoogle Scholar
  34. 34.
    Ni'mah YL, Cheng M-Y, Cheng JH, Rick J, Hwang B-J (2015) Solid-state polymer nanocomposite electrolyte of TiO 2 /PEO/NaClO 4 for sodium ion batteries. J Power Sources 278:375–381CrossRefGoogle Scholar
  35. 35.
    Sapri M, Zairi MN, Ahmad AH, Mahat MM (2017) Thermal analysis of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid to PEO-NaCF3SO3 Polymer Electrolyte, Solid State Phenomena. Trans Tech Publ 268:338–342Google Scholar
  36. 36.
    Karan N, Pradhan D, Thomas R, Natesan B, Katiyar R (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ionics 179:689–696CrossRefGoogle Scholar
  37. 37.
    Ali A, Subban R, Bahron H, Winie T, Latif F, Yahya M (2008) Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies. Ionics 14:491–500CrossRefGoogle Scholar
  38. 38.
    Lee W-J, Jung H-R, Lee MS, Kim J-H, Yang KS (2003) Preparation and ionic conductivity of sulfonated-SEBS/SiO2/plasticizer composite polymer electrolyte for polymer battery. Solid State Ionics 164:65–72CrossRefGoogle Scholar
  39. 39.
    Noor S, Ahmad A, Talib I, Rahman MYA (2010) Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 16:161–170CrossRefGoogle Scholar
  40. 40.
    Gray F (1997) Royal Society of Chemistry (Great Britain), polymer electrolytes. Royal Society of Chemistry, CambridgeGoogle Scholar
  41. 41.
    Yoon H, Zhu H, Hervault A, Armand M, MacFarlane DR, Forsyth M (2014) Physicochemical properties of N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. Phys Chem Chem Phys 16:12350–12355CrossRefGoogle Scholar
  42. 42.
    Vélez J, Álvarez L, del Río C, Herradón B, Mann E, Morales E (2017) Imidazolium-based Mono and Dicationic Ionic Liquid Sodium Polymer Gel Electrolytes. Electrochimica Acta 241:517–525CrossRefGoogle Scholar
  43. 43.
    Noor S, Su N, Khoon L, Mohamed N, Ahmad A, Yahya M, Zhu H, Forsyth M, MacFarlane D (2017) Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytes. Electrochim Acta 247:983–993CrossRefGoogle Scholar
  44. 44.
    Noor SAM, Yoon H, Forsyth M, MacFarlane DR (2015) Gelled ionic liquid sodium ion conductors for sodium batteries. Electrochim Acta 169:376–381CrossRefGoogle Scholar
  45. 45.
    Carbone L, Gobet M, Peng J, Devany M, Scrosati B, Greenbaum S, Hassoun J (2015) Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. J Power Sources 299:460–464CrossRefGoogle Scholar
  46. 46.
    Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50CrossRefGoogle Scholar
  47. 47.
    TianKhoon L, Hassan NH, Rahman MYA, Vedarajan R, Matsumi N, Ahmad A (2015) One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ionics 276:72–79CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. C. Su
    • 1
  • S. A. M. Noor
    • 2
    Email author
  • M. F. Roslee
    • 3
  • N. S. Mohamed
    • 4
  • A. Ahmad
    • 5
  • M. Z. A. Yahya
    • 2
  1. 1.Faculty of Defence Science and TechnologyNational Defence University of MalaysiaKuala LumpurMalaysia
  2. 2.Centre for Defence Foundation StudiesNational Defence University of MalaysiaKuala LumpurMalaysia
  3. 3.Industrial Centre of Innovation Energy ManagementSIRIM Industrial ResearchKulimMalaysia
  4. 4.Centre for Foundation Studies in ScienceUniversity of MalayaKuala LumpurMalaysia
  5. 5.School of Chemical Sciences and Food Technology, Faculty of Science and TechnologyNational University of MalaysiaBangiMalaysia

Personalised recommendations