, Volume 25, Issue 6, pp 2677–2684 | Cite as

An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator

  • Guobin Zhong
  • Yong Wang
  • Chao Wang
  • Zhonghui Wang
  • Song Guo
  • Lijuan Wang
  • Xin Liang
  • Hongfa XiangEmail author
Original Paper


To improve the safety of lithium-ion batteries (LIBs), an AlOOH-coated polyimide (API) fibrous membrane as an inorganic composite separator is developed via an electrospinning technique and a subsequent blade-coating process. Benefiting from the good thermostability of polyimide and the flame-retarding property of AlOOH, the API separator shows excellent thermal stability and flame retardance. Compared with commercial polyolefin separator, the API separator exhibits superior electrolyte wettability and electrochemical stability. The Li||LiCoO2 cell using the API separator exhibits the enhanced cycling performance and rate capability. Thus, the as-prepared API separator is promising as a new kind of inorganic composite separator for advanced LIBs with high safety.


Composite separator Polyimide Boehmite Safety Lithium-ion batteries 



This study was supported by the Science and Technology Projects of China Southern Power Grid (Grant No. GDKJQQ20152008).

Supplementary material

11581_2018_2716_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1910 kb)


  1. 1.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104(10):4419–4462CrossRefGoogle Scholar
  2. 2.
    Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364CrossRefGoogle Scholar
  3. 3.
    Zhang TW, Shen B, Yao HB, Ma T, Lu LL, Zhou F, Yu SH (2017) Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries. Nano Lett 17(8):4894–4901CrossRefGoogle Scholar
  4. 4.
    Baginska M, Blaiszik BJ, Merriman RJ, Sottos NR, Moore JS, White SR (2012) Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv Energy Mater 2(5):583–590CrossRefGoogle Scholar
  5. 5.
    Choi J-A, Kim SH, Kim D-W (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195(18):6192–6196CrossRefGoogle Scholar
  6. 6.
    Dong X, Mi W, Yu L, Jin Y, Lin YS (2016) Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous Mesoporous Mater 226:406–414CrossRefGoogle Scholar
  7. 7.
    Shi C, Dai J, Li C, Shen X, Peng L, Zhang P, Wu D, Sun D, Zhao J (2017) A modified ceramic-coating separator with high-temperature stability for lithium-ion battery. Polymers 9(5):159CrossRefGoogle Scholar
  8. 8.
    Shi C, Zhu J, Shen X, Chen F, Ning F, Zhang H, Long Y-Z, Ning X, Zhao J (2018) Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery. RSC Adv 8(8):4072–4077CrossRefGoogle Scholar
  9. 9.
    Yu L, Jin Y, Lin YS (2016) Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: effects of high melting point organic binder. RSC Adv 6(46):40002–40009CrossRefGoogle Scholar
  10. 10.
    Wang Z, Xiang H, Wang L, Xia R, Nie S, Chen C, Wang H (2018) A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J Membr Sci 553:10–16CrossRefGoogle Scholar
  11. 11.
    Wang X, Xu G, Wang Q, Lu C, Zong C, Zhang J, Cui G (2018) A phase inversion based sponge-like polysulfonamide/SiO2 composite separator for high performance lithium-ion batteries. Chin J Chem Eng 2018(26):1292–1299Google Scholar
  12. 12.
    Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333CrossRefGoogle Scholar
  13. 13.
    Li W, Li X, Yuan A, Xie X, Xia B (2016) Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries. Ionics 22(11):2143–2149CrossRefGoogle Scholar
  14. 14.
    Wu D, Shi C, Huang S, Qiu X, Wang H, Zhan Z, Zhang P, Zhao J, Sun D, Lin L (2015) Electrospun nanofibers for sandwiched polyimide/poly (vinylidene fluoride)/polyimide separators with the thermal shutdown function. J. Electrochim Acta 176:727–734CrossRefGoogle Scholar
  15. 15.
    Shi C, Zhang P, Huang S, He X, Yang P, Wu D, Sun D, Zhao J (2015) Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J Power Sources 298:158–165CrossRefGoogle Scholar
  16. 16.
    Jiang W, Liu Z, Kong Q, Yao J, Zhang C, Han P, Cui G (2013) A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 232:44–48CrossRefGoogle Scholar
  17. 17.
    Lin D, Zhuo D, Liu Y, Cui Y (2016) All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J Am Chem Soc 138(34):11044–11050CrossRefGoogle Scholar
  18. 18.
    Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86CrossRefGoogle Scholar
  19. 19.
    Zhang H, Lin C-E, Zhou M-Y, John AE, Zhu B-K (2016) High thermal resistance polyimide separators prepared via soluble precursor and non-solvent induced phase separation process for lithium ion batteries. J Electrochim Acta 187:125–133CrossRefGoogle Scholar
  20. 20.
    Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254CrossRefGoogle Scholar
  21. 21.
    Lee Y, Lee H, Lee T, Ryou M-H, Lee YM (2015) Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries. J Power Sources 294:537–544CrossRefGoogle Scholar
  22. 22.
    Shayapat J, Chung OH, Park JS (2015) Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim Acta 170:110–121CrossRefGoogle Scholar
  23. 23.
    Wen H, Zhang J, Chai J, Ma J, Yue L, Dong T, Cui G (2017) Sustainable and superior heat-resistant alginate nonwoven separator of LiNi0.5Mn1.5O4/Li batteries operated at 55°C. ACS Appl Mater Interfaces 9(4):3694–3701CrossRefGoogle Scholar
  24. 24.
    Laachachi A, Ferriol M, Cochez M, Lopez Cuesta JM, Ruch D (2009) A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym Degrad 94(9):1373–1378CrossRefGoogle Scholar
  25. 25.
    Huang PH, Chang SJ, Li CC, Chen C (2017) A boehmite-based microcapsules as flame-retardants for lithium-ion batteries. Electrochim Acta 228:597–603CrossRefGoogle Scholar
  26. 26.
    Yang CW, Tong H, Luo CP, Yuan SL, Chen GR, Yang YX (2017) Boehmite particle coating modified microporous polyethylene membrane: a promising separator for lithium ion batteries. J Power Sources 348:80–86CrossRefGoogle Scholar
  27. 27.
    Hamdani-Devarennes S, El Hage R, Dumazert L, Sonnier R, Ferry L, Lopez-Cuesta JM, Bert C (2016) Water-based flame retardant coating using nano-boehmite for expanded polystyrene (EPS) foam. Prog Org Coat 99:32–46CrossRefGoogle Scholar
  28. 28.
    Wang Y, Zhu S, Sun D, Jin Y (2016) Preparation and evaluation of a separator with an asymmetric structure for lithium-ion batteries. RSC Adv 6(107):105461–105468CrossRefGoogle Scholar
  29. 29.
    Liao H, Zhang H, Qin G, Li Z, Li L, Hong H (2017) A macro-porous graphene oxide-based membrane as a separator with enhanced thermal stability for high-safety lithium-ion batteries. RSC Adv 7(36):22112–22120CrossRefGoogle Scholar
  30. 30.
    Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30CrossRefGoogle Scholar
  31. 31.
    Xie Y, Xiang H, Shi P, Guo J, Wang H (2017) Enhanced separator wettability by LiTFSI and its application for lithium metal batteries. J Membr Sci 524:315–320CrossRefGoogle Scholar
  32. 32.
    Shi J, Hu H, Xia Y, Liu Y, Liu Z (2014) Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. J Mater Chem A 2(24):9134CrossRefGoogle Scholar
  33. 33.
    Azimi G, Dhiman R, Kwon H-M, Paxson AT, Varanasi KK (2013) Hydrophobicity of rare-earth oxide ceramics. Nat Mater 12:315–320CrossRefGoogle Scholar
  34. 34.
    Huang P-H, Chang S-J, Li C-C (2017) Encapsulation of flame retardants for application in lithium-ion batteries. J Power Sources 338:82–90CrossRefGoogle Scholar
  35. 35.
    Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRefGoogle Scholar
  36. 36.
    Yeon D, Lee Y, Ryou M-H, Lee YM (2015) New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. J Electrochim Acta 157:282–289CrossRefGoogle Scholar
  37. 37.
    Zhai Y, Xiao K, Yu J, Yang J, Ding B (2015) Thermostable and nonflammable silica-polyetherimide-polyurethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3(19):10551–10558CrossRefGoogle Scholar
  38. 38.
    Yanilmaz M, Lu Y, Li Y, Zhang X (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sources 273:1114–1119CrossRefGoogle Scholar
  39. 39.
    Lee H, Ren X, Niu C, Yu L, Engelhard MH, Cho I, Ryou M-H, Jin HS, Kim H-T, Liu J, Xu W, Zhang J-G (2017) Suppressing lithium dendrite growth by metallic coating on a separator. Adv Funct Mater 27(45):1704391CrossRefGoogle Scholar
  40. 40.
    Suriyakumar S, Raja M, Angulakshmi N, Nahm KS, Stephan AM (2016) A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries. RSC Adv 6(94):92020–92027CrossRefGoogle Scholar
  41. 41.
    Xu W, Wang Z, Shi L, Ma Y, Yuan S, Sun L, Zhao Y, Zhang M, Zhu J (2015) Layer-by-layer deposition of organic–inorganic hybrid multilayer on microporous polyethylene separator to enhance the electrochemical performance of lithium-ion battery. ACS Appl Mater Interfaces 7(37):20678–20686CrossRefGoogle Scholar
  42. 42.
    Shi P, Zhang L, Xiang H, Liang X, Sun Y, Xu W (2018) Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries. ACS Appl Mater Interfaces 10(26):22201–22209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guobin Zhong
    • 1
  • Yong Wang
    • 2
  • Chao Wang
    • 1
  • Zhonghui Wang
    • 2
  • Song Guo
    • 3
  • Lijuan Wang
    • 2
  • Xin Liang
    • 2
  • Hongfa Xiang
    • 2
    Email author
  1. 1.Electric Power Research Institute of Guangdong Power Grid Co., Ltd.GuangzhouChina
  2. 2.School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and DevicesHefei University of TechnologyHefeiChina
  3. 3.School of Chemical EngineeringNanjing University of Science & TechnologyNanjingChina

Personalised recommendations