, Volume 25, Issue 3, pp 1291–1301 | Cite as

An eco-friendly water-soluble graphene-incorporated agar gel electrolyte for magnesium-air batteries

  • Siaw Ying Liew
  • Joon Ching JuanEmail author
  • Chin Wei Lai
  • Guan-Ting Pan
  • Thomas C.-K. Yang
  • Tian Khoon Lee
Original Paper


Agar is used to prepare an environment-friendly water-soluble graphene (WSG)-incorporated gel electrolyte for magnesium-air batteries. WSG is synthesised and incorporated into the different concentrations of agar. Their effects on the electrochemical performance in the battery cell are investigated through the ionic conductivity, corrosion and current discharge studies. The open-circuit voltage (OCV) of the assembled cells is between 1.7 and 1.6 V. The optimal gel electrolyte has an ionic conductivity of 8.62 × 10−2 S cm−1. The discharge capacity and energy density of assembled Mg-air battery with respect to Mg can reach up to 1010.60 mAh g−1 and 1406.09 mWh g−1, respectively. The performance of the assembled Mg-air battery is notable in regard to the small area, size and thickness of the laminated structure. In conclusion, WSG-incorporated 3% w/v agar gel electrolyte exhibits the highest electrochemical performance, which is an economical, inherently safe and environmentally benign biopolymer electrolyte for Mg-air batteries.

Graphical abstract


Air battery Agar Water-soluble graphene Gel electrolyte Biopolymer 



This work was supported by the Grand Challenge (GC002A-15SBS) and the IPPP-UM (PG219-2016A).

Supplementary material

11581_2018_2710_MOESM1_ESM.docx (728 kb)
ESM 1 (DOCX 727 kb)


  1. 1.
    Zhang T, Tao Z, Chen J (2014) Magnesium–air batteries: from principle to application. Mater Horiz 1(2):196–206CrossRefGoogle Scholar
  2. 2.
    Zhang Z, Zuo C, Liu Z, Yu Y, Zuo Y, Song Y (2014) All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J Power Sources 251:470–475CrossRefGoogle Scholar
  3. 3.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRefGoogle Scholar
  4. 4.
    Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M, Kim HS, Allred GD, Zajicek J, Kotani Y (2012) Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 5(3):5941–5950CrossRefGoogle Scholar
  5. 5.
    Peng B, Liang J, Tao Z, Chen J (2009) Magnesium nanostructures for energy storage and conversion. J Mater Chem 19(19):2877–2883CrossRefGoogle Scholar
  6. 6.
    Wang X, Hou Y, Zhu Y, Wu Y, Holze R (2013) An aqueous rechargeable lithium battery using coated Li metal as anode. Sci Rep 3:1401CrossRefGoogle Scholar
  7. 7.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279CrossRefGoogle Scholar
  8. 8.
    Yan Y, Khoo T, Pozo-Gonzalo C, Hollenkamp AF, Howlett PC, MacFarlane DR, Forsyth M (2014) Roles of additives in the trihexyl (tetradecyl) phosphonium chloride ionic liquid electrolyte for primary Mg-air cells. J Electrochem Soc 161(6):A974–A980Google Scholar
  9. 9.
    Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 4:1805CrossRefGoogle Scholar
  10. 10.
    Di Palma T et al (2017) Xanthan and κ-carrageenan based alkaline hydrogels as electrolytes for Al/air batteries. Carbohydr Polym 157:122–127CrossRefGoogle Scholar
  11. 11.
    Finkenstadt VL (2005) Natural polysaccharides as electroactive polymers. Appl Microbiol Biotechnol 67(6):735–745CrossRefGoogle Scholar
  12. 12.
    Kadokawa J-i, Murakami MA, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75(1):180–183CrossRefGoogle Scholar
  13. 13.
    Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinoth pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157(Supplement C):38–47CrossRefGoogle Scholar
  14. 14.
    Rachocki A, Pogorzelec-Glaser K, Pawlaczyk C, Tritt-Goc J (2011) Morphology, molecular dynamics and electric conductivity of carbohydrate polymer films based on alginic acid and benzimidazole. Carbohydr Res 346(17):2718–2726CrossRefGoogle Scholar
  15. 15.
    Purwanto M, Atmaja L, Mohamed MA, Salleh MT, Jaafar J, Ismail AF, Santoso M, Widiastuti N (2016) Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells. RSC Adv 6(3):2314–2322CrossRefGoogle Scholar
  16. 16.
    Moon WG, Kim GP, Lee M, Song HD, Yi J (2015) A biodegradable gel electrolyte for use in high-performance flexible supercapacitors. ACS Appl Mater Interfaces 7(6):3503–3511CrossRefGoogle Scholar
  17. 17.
    Aziz M et al (2015) PVA based gel polymer electrolytes with mixed iodide salts (K+I and Bu4N+I) for dye-sensitized solar cell application. Electrochim Acta 182:217–223CrossRefGoogle Scholar
  18. 18.
    Vaghela C, Kulkarni M, Haram S, Karve M, Aiyer R (2016) Biopolymer-polyaniline composite for a wide range ammonia gas sensor. IEEE Sensors J 16(11):4318–4325CrossRefGoogle Scholar
  19. 19.
    Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13(6):3340–3359CrossRefGoogle Scholar
  20. 20.
    Venugopal V (2011) Polysaccharides from seaweed and microalgae. In: Marine polysaccharides: food applications. CRC, Boca Raton, pp 89–134CrossRefGoogle Scholar
  21. 21.
    Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar-based films for application as polymer electrolytes. Electrochim Acta 55(4):1455–1459CrossRefGoogle Scholar
  22. 22.
    An L, Zhao T, Zeng L (2013) Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells. Appl Energy 109:67–71CrossRefGoogle Scholar
  23. 23.
    Selvam M et al (2013) Synthesis and characterization of electrochemically-reduced graphene. Bull Mater Sci 36(7):1315–1321CrossRefGoogle Scholar
  24. 24.
    Lih ETY, Ling TL, Chong KF (2012) Facile corrosion protection coating from graphene. Int J Chem Eng Appl 3(6):453–455Google Scholar
  25. 25.
    Mayilvel Dinesh M, Saminathan K, Selvam M, Srither SR, Rajendran V, Kaler KVIS (2015) Water soluble graphene as electrolyte additive in magnesium-air battery system. J Power Sources 276:32–38CrossRefGoogle Scholar
  26. 26.
    Chong SW, Lai CW, Abd Hamid SB (2015) Green preparation of reduced graphene oxide using a natural reducing agent. Ceram Int 41(8):9505–9513CrossRefGoogle Scholar
  27. 27.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRefGoogle Scholar
  28. 28.
    Jia X, Yang Y, Wang C, Zhao C, Vijayaraghavan R, MacFarlane DR, Forsyth M, Wallace GG (2014) Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries. ACS Appl Mater Interfaces 6(23):21110–21117CrossRefGoogle Scholar
  29. 29.
    Yuasa M, Huang X, Suzuki K, Mabuchi M, Chino Y (2015) Discharge properties of Mg–Al–Mn–Ca and Mg–Al–Mn alloys as anode materials for primary magnesium–air batteries. J Power Sources 297:449–456CrossRefGoogle Scholar
  30. 30.
    Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM (2012) Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt Express 20(17):19463–19473CrossRefGoogle Scholar
  31. 31.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRefGoogle Scholar
  32. 32.
    Willemse CM, Tlhomelang K, Jahed N, Baker PG, Iwuoha EI (2011) Metallo-graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions. Sensors 11(4):3970–3987CrossRefGoogle Scholar
  33. 33.
    Bo Z et al (2014) Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci Rep 4(4684):1–8Google Scholar
  34. 34.
    Gurunathan S et al (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901CrossRefGoogle Scholar
  35. 35.
    Xu Q, Zeng M, Feng Z, Yin D, Huang Y, Chen Y, Yan C, Li R, Gu Y (2016) Understanding the effects of carboxylated groups of functionalized graphene oxide on the curing behavior and intermolecular interactions of benzoxazine nanocomposites. RSC Adv 6(37):31484–31496CrossRefGoogle Scholar
  36. 36.
    Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2017) Study on NH4I composition effect in agar–agar-based biopolymer electrolyte. Ionics 23(10):2791–2797CrossRefGoogle Scholar
  37. 37.
    Shankar S, Rhim J-W (2017) Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll 71:76–84CrossRefGoogle Scholar
  38. 38.
    Volery P, Besson R, Schaffer-Lequart C (2004) Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J Agric Food Chem 52(25):7457–7463CrossRefGoogle Scholar
  39. 39.
    Shankar S, Teng X, Rhim J-W (2014) Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr Polym 114:484–492CrossRefGoogle Scholar
  40. 40.
    Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26CrossRefGoogle Scholar
  41. 41.
    Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2018) Effect of ethylene carbonate plasticizer on agar-agar: NH4Br-based solid polymer electrolytes. Ionics 24(8):2209–2217Google Scholar
  42. 42.
    Bora C, Bharali P, Baglari S, Dolui SK, Konwar BK (2013) Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity. Compos Sci Technol 87:1–7CrossRefGoogle Scholar
  43. 43.
    Belay M, Nagarale RK, Verma V (2017) Preparation and characterization of graphene-agar and graphene oxide-agar composites. J Appl Polym Sci 134(33):45085CrossRefGoogle Scholar
  44. 44.
    Wojtoniszak M, Zielinska B, Kalenczuk RJ, Mijowska E (2012) Photocatalytic performance of titania nanospheres deposited on graphene in coumarin oxidation reaction. Mater Sci-Pol 30(1):32–38CrossRefGoogle Scholar
  45. 45.
    Hernandez-Carmona G, Freile-Pelegrin Y, Garibay EH (2013) Conventional and alternative technologies for the extraction of algal polysaccharides. In: Dominguez H (ed) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing Limited, La Vergne, pp 475–509CrossRefGoogle Scholar
  46. 46.
    Jia X, Wang C, Ranganathan V, Napier B, Yu C, Chao Y, Forsyth M, Omenetto FG, MacFarlane DR, Wallace GG (2017) A biodegradable thin-film magnesium primary battery using silk fibroin–ionic liquid polymer electrolyte. ACS Energy Lett 2(4):831–836CrossRefGoogle Scholar
  47. 47.
    Lebrini M, Lagrenée M, Traisnel M, Gengembre L, Vezin H, Bentiss F (2007) Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis(n-thienyl)-1,3,4-thiadiazoles: electrochemical, X-ray photoelectron spectroscopy and theoretical studies. Appl Surf Sci 253(23):9267–9276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siaw Ying Liew
    • 1
  • Joon Ching Juan
    • 1
    • 2
    Email author
  • Chin Wei Lai
    • 1
  • Guan-Ting Pan
    • 3
  • Thomas C.-K. Yang
    • 3
  • Tian Khoon Lee
    • 4
  1. 1.Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute of Graduate Studies (IPS)University of Malaya (UM)Kuala LumpurMalaysia
  2. 2.School of ScienceMonash University of MalaysiaSubang JayaMalaysia
  3. 3.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan
  4. 4.Fuel Cell Institute (FCI)Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations