Advertisement

Ionics

, Volume 25, Issue 2, pp 675–683 | Cite as

From amorphous to crystalline: in situ growth Ni-Co chalcogenides hybrid nanostructure on carbon cloth for supercapacitor

  • Ji YanEmail author
  • Lathankan Rasenthiram
  • Hua Fang
  • Ricky Tjandra
  • Lixia WangEmail author
  • Lizhen Wang
  • Yong Zhang
  • Linsen Zhang
  • Aiping Yu
Original Paper
  • 94 Downloads

Abstract

In this work, Ni-Co chalcogenides with controllable amorphous structure were successfully grown on carbon cloth via a facile surfactant-assisted hydrothermal route. The interacted reaction between NiCo2(OH)6 precursor and thioacetamide plays a critical role in altering the morphology and crystal structure of Ni-Co chalcogenides. The varying active sites in NiCo2(OH)6 and the H2S gas decomposed from thioacetamide are found to be the key factors for the formation of amorphous Ni-Co chalcogenides. By benefiting from the amorphous structure and hybrid nanosheet morphology, the as-prepared Ni-Co chalcogenides delivers a specific capacitance of 2361.5 F g−1 while retaining 75.8% of its highest capacitance over 2000 cycles at 20 A g−1. The crystallized NiCo2S4 possesses excellent cycling stability but low specific capacitance. This work paves a promising and simple way for precise synthesis amorphous/crystal metal chalcogenides as active materials in aqueous supercapacitors and other high-performance energy storage devices.

Keywords

Amorphous NiCo2S4 Hybrid nanocluster Flexible Supercapacitors 

Notes

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21471135, 21506198, U1504204) and the Natural Sciences and Engineering Research Council of Canada (NSERC) and Ontario government for Ontario Early Research Award Program.

Supplementary material

11581_2018_2700_MOESM1_ESM.doc (682 kb)
ESM 1 (DOC 681 kb)

References

  1. 1.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  3. 3.
    Ferris A, Garbarino S, Guay D, Pech D (2015) 3D RuO2 microsupercapacitors with remarkable areal energy. Adv Mater 27:6625–6629CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Xiao F, Qian L, Xiao J, Wang S, Liu Y (2014) Facile synthesis of 3D MnO2-graphene and carbon nanotube-graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv Energy Mater 4:1400064CrossRefGoogle Scholar
  5. 5.
    Su Z, Yang C, Xie B, Lin Z, Zhang Z, Liu J, Li B, Kang F, Wong CP (2014) Scalable fabrication of MnO2nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy Environ Sci 7:2652–2659CrossRefGoogle Scholar
  6. 6.
    Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XW (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887CrossRefGoogle Scholar
  7. 7.
    Wang C, Xu J, Yuen M-F, Zhang J, Li Y, Chen X, Zhang W (2014) Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv Funct Mater 24:6372–6380CrossRefGoogle Scholar
  8. 8.
    Kurra N, Alhebshi NA, Alshareef HN (2015) Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv Energy Mater 5:1401303CrossRefGoogle Scholar
  9. 9.
    Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6:19318–19326CrossRefGoogle Scholar
  10. 10.
    Shen L, Yu L, Wu HB, Yu X-Y, Zhang X, Lou XWD (2015) Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun 6:6694CrossRefGoogle Scholar
  11. 11.
    Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8:9531–9541CrossRefGoogle Scholar
  12. 12.
    Li Y, Cao L, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y (2014) Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A 2:6540–6548CrossRefGoogle Scholar
  13. 13.
    L. Shen, J. Wang, G. Xu, H. Li, H. Dou and X. Zhang (2014) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 1400977.  https://doi.org/10.1002/aenm.201400977.
  14. 14.
    Yu L, Zhang L, Wu HB, Lou XWD (2014) Formation of NixCo3−xS4hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem Int Ed 53:3711–3714CrossRefGoogle Scholar
  15. 15.
    Kong W, Lu C, Zhang W, Pu J, Wang Z (2015) Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A 3:12452–12460CrossRefGoogle Scholar
  16. 16.
    Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257CrossRefGoogle Scholar
  17. 17.
    Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883CrossRefGoogle Scholar
  18. 18.
    Yang J, Ma M, Sun C, Zhang Y, Huang W, Dong X (2015) Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J Mater Chem A 3:1258–1264CrossRefGoogle Scholar
  19. 19.
    Wei C, Lu Q, Sun J, Gao F (2013) Evolution of nickel sulfide hollow spheres through topotactic transformation. Nanoscale 5:12224–12230CrossRefGoogle Scholar
  20. 20.
    Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637CrossRefGoogle Scholar
  21. 21.
    Sun M, Tie J, Cheng G, Lin T, Peng S, Deng F, Ye F, Yu L (2015) In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors. J Mater Chem A 3:1730–1736CrossRefGoogle Scholar
  22. 22.
    Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49:10178–10180CrossRefGoogle Scholar
  23. 23.
    Xu W, Chao C, Yali D, Xuezhen L, Xiaojian L, Xianmei X (2018) Facile synthesis of NiAl-LDHs with tunable establishment of acid-base activity sites. Mater Chem Phys 211:72-78.  https://doi.org/10.1016/j.matchemphys.2018.02.015
  24. 24.
    Nobuo l, Taki M, Yoshiro K, Kenji K (2004) A novel synthetic route to layered double hydroxides using hexamethylenetetramine. Chem Lett 33:1122-1123.  https://doi.org/10.1246/cl.2004.1122
  25. 25.
    Long C, Fangzhi H, Shikuo L, Yuhua S, Anjian X, Jian P, Yaping Z, Yan C (2011) Biomimetic synthesis of aragonite superstructures using hexamethylenetetramine. J Solid State Chem 184:2825-2833.  https://doi.org/10.1016/j.jssc.2011.08.009
  26. 26.
    Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894CrossRefGoogle Scholar
  27. 27.
    Du W, Wang Z, Zhu Z, Hu S, Zhu X, Shi Y, Pang H, Qian X (2014) Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J Mater Chem A 2:9613–9619CrossRefGoogle Scholar
  28. 28.
    Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139CrossRefGoogle Scholar
  29. 29.
    Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14:831–838CrossRefGoogle Scholar
  30. 30.
    Ji J, Zhang L, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243CrossRefGoogle Scholar
  31. 31.
    Liu W, Lu C, Wang X, Liang K, Tay BK (2015) In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. J Mater Chem A 3:624–633CrossRefGoogle Scholar
  32. 32.
    K. Xu, X. Huang, Q. Liu, R. Zou, W. Li, X. Liu, S. Li, J. Yang and J. Hu (2015) J Mater Chem A 2, 16731–16739Google Scholar
  33. 33.
    Kim BK, Chabot V, Yu A (2013) Carbon nanomaterials supported Ni(OH)2/NiO hybrid flower structure for supercapacitor. Electrochim Acta 109:370–380CrossRefGoogle Scholar
  34. 34.
    Zhou Y, Ma L, Gan M, Ye M, Li X, Zhai Y, Yan F, Cao F (2018) Monodisperse MnO 2 @NiCo 2 O 4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors. Appl Surf Sci 444:1–9CrossRefGoogle Scholar
  35. 35.
    Zhao J, Li Z, Yuan X, Yang Z, Zhang M, Meng A, Li Q (2018) A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on sic nanowire networks as free-standing advanced electrodes. Adv Energy Mater 8:1702787.  https://doi.org/10.1002/aenm.201702787 CrossRefGoogle Scholar
  36. 36.
    Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L (2015) High-performance sodium ion batteries based on a 3d anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRefGoogle Scholar
  37. 37.
    Yu Z, McInnis M, Calderon J, Seal S, Zhai L, Thomas J (2015) Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nano Energy 11:611–620CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ji Yan
    • 1
    Email author
  • Lathankan Rasenthiram
    • 2
  • Hua Fang
    • 1
  • Ricky Tjandra
    • 2
  • Lixia Wang
    • 1
    Email author
  • Lizhen Wang
    • 1
  • Yong Zhang
    • 1
  • Linsen Zhang
    • 1
  • Aiping Yu
    • 2
  1. 1.School of Materials and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China
  2. 2.Department of Chemical Engineering, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada

Personalised recommendations