, Volume 25, Issue 3, pp 981–990 | Cite as

Structural, electrical, and dielectric properties of nickel-doped spinel LiMn2O4 nanorods

  • Nageswara Rao B.Email author
  • Narsimulu D.
  • Srinadhu E.S.
  • Satyanarayana N.
Original Paper


Spinel pure and Ni-doped LiMn2O4 nanorods were synthesized by a rapid microwave-assisted hydrothermal process followed by a solid-state reaction method. Their structural, morphological, electrical, and dielectric properties were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and impedance spectroscopy techniques. Powder XRD studies revealed that all the synthesized samples have well-defined cubic crystal structure and the Ni2+ doping in manganese sites did not affect spinel LiMn2O4 structure. TEM images of pure and Ni-doped LiMn2O4 samples clearly showed the formation of well-dispersed nanorods with uniform distribution. The Ni2+ doping did not affect the nanorod morphology of pure LiMn2O4. The spinel LiMn2O4 nanorods showed an electrical conductivity of 3.13 × 10−4 S cm−1, at room temperature. The A.C conductivity studies revealed that the pure and Ni-doped LiMn2O4 nanorods obey Jonscher’s power law. The dielectric studies revealed that the dielectric constant of the samples decreases with frequency, which is due to decrease in charge accumulation at the interface.


Microwave synthesis Ni-doped LiMn2O4 nanorods X-ray diffraction (XRD) Transmission electron microscopy (TEM) Electrical conductivity Dielectric properties 



NS is grateful to UGC, Govt. of India for providing financial support in the form of research project sanction No.: 39-460/2010 (SR), Dt: 04.01.2011. BNR is thankful to DST, Govt. of INDIA for awarding the INSPIRE fellowship No.: DST/INSPIRE Fellowship/2011/[241], DT: 30-11-2011, for pursuing the Doctoral degree.


  1. 1.
    Iqbal A, Iqbal Y, Khan AM, Ahmed S (2018) Effect of bication (Cu-Cr) substitution on the structure and electrochemical performance of LiMn2O4 spinel cathodes at low and high current rates. J Saudi Chem Soc 22:449–458Google Scholar
  2. 2.
    Jin R, Meng Y, MaY LH, Sun Y, Chen G (2016) Hierarchical MnCo2O4 constructed by mesoporous nanosheets@polypyrrole composites as anodes for lithium ion batteries. Electrochim Acta 209:163–170CrossRefGoogle Scholar
  3. 3.
    Su J, Cao MH, Ren L, Hu CW (2011) Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C 115:14469–14477CrossRefGoogle Scholar
  4. 4.
    Zhu XJ, Zhu YW, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338CrossRefGoogle Scholar
  5. 5.
    Yoshio M, Inoue S, Hyakutake M, Piao G, Nakamura H (1991) New lithium manganese composite oxide for the cathode of rechargeable lithium batteries. J Power Sources 34:147–152CrossRefGoogle Scholar
  6. 6.
    Gummow RJ, DeKock A, Thackeray MM (1994) Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69:59–67CrossRefGoogle Scholar
  7. 7.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946CrossRefGoogle Scholar
  8. 8.
    Nageswara Rao B, Muralidharan P, Ramesh Kumar P, Venkateswarlu M, Satyanarayana N (2014) Fast and facile synthesis of LiMn2O4 nanorods for Li ion battery by microwave assisted hydrothermal and solid state reaction methods. Int J Electrochem Sci 9:1207–1220Google Scholar
  9. 9.
    Nageswara Rao B, Padmaraj O, Narsimulu D, Venkateswarlu M, Satyanarayana N (2015) A.C conductivity and dielectric properties of spinel LiMn2O4 nanorods. Ceram Int 41:14070–14077CrossRefGoogle Scholar
  10. 10.
    Lee Y, Kim MG, Cho J (2008) Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material. Nano Lett 8:957–961CrossRefGoogle Scholar
  11. 11.
    Li N, Patrissi CJ, Che G, Martin CR (2000) Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J Electrochem Soc 147:2044–2049CrossRefGoogle Scholar
  12. 12.
    Chung KY, Kim KB (2002) Investigation of structural fatigue in spinel electrodes using in situ laser probe beam deflection technique. J Electrochem Soc 149:A79–A85CrossRefGoogle Scholar
  13. 13.
    Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li / Li x Mn2O 4 cells. J Electrochem Soc 143:2204–2211Google Scholar
  14. 14.
    Chung KY, Kim KD (2004) Investigations into capacity fading as a result of a Jahn–Teller distortion in 4 V LiMn2O4 thin film electrodes. Electrochim Acta 49:3327–3337CrossRefGoogle Scholar
  15. 15.
    Thackeray MM, Shao-Horn Y, Kahaian AJ, Kelper KD, Skinner E, Vaughey JT, Hackney SA (1998) Structural fatigue in spinel electrodes in high voltage (4 V ) Li / Li x Mn2 O 4 cells. Electrochem Solid State Lett 1:7–9CrossRefGoogle Scholar
  16. 16.
    Shi S, Wang D, Meng S, Chen L, Huang X (2003) First-principles studies of cation-doped spinel LiMn2O4 for lithium ion batteries. Phys Rev B: Condens Matter 67:115130(1)–115130(6)Google Scholar
  17. 17.
    Xia H, Tang SB, Lua L, Mengc YS, Ceder G (2007) The influence of preparation conditions on electrochemical properties of LiNi0.5Mn1.5O4 thin film electrodes by PLD. Electrochim Acta 52:2822–2828CrossRefGoogle Scholar
  18. 18.
    Le JF, Tsai YW, Raman S, Hwang BJ, Yang MH, Liu DG (2003) Local structure transformation of nano-sized Al-doped LiMn2O4 sintered at different temperatures. J Power Sources 119:721–726CrossRefGoogle Scholar
  19. 19.
    Myung ST, Komaba S, Kumagai N (2001) Enhanced structural stability and cyclability of Al-doped LiMn2 O 4 spinel synthesized by the emulsion drying method. J Electrochem Soc 148:A482–A489CrossRefGoogle Scholar
  20. 20.
    Li S, Zhu K, Du S (2017) Enhanced elevated-temperature performance of Al-doped LiMn2O4 as cathodes for lithium ion batteries, AIP Conference Proceedings 1890:040098 (1)-040098 (5)Google Scholar
  21. 21.
    Yang S, Schmidt DO, Khetan A, Schrader F, Jakobi S, Homberger M, Noyong N, Paulus A, Kungl H, Eichel RA, Pitsch H, Simon U (2018) Electrochemical and electronic charge transport properties of Ni-doped LiMn2O4 spinel obtained from polyol-mediated synthesis. Materials 11:806–824CrossRefGoogle Scholar
  22. 22.
    Michalska M, Ziółkowska DA, Jasiński JB, Lee PH, Ławniczak P, Andrzejewski B, Ostrowski A, Bednarski W, Wu SH, Lin JY (2018) Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochim Acta 276:37–46CrossRefGoogle Scholar
  23. 23.
    Ram P, Gören A, Ferdov S, Silva MM, Singhal R, Costa CM, Sharma RK, Méndez SL (2016) Improved performance of rare earth doped LiMn2O4 cathodes for lithium-ion battery applications. New J Chem 40:6244–6252CrossRefGoogle Scholar
  24. 24.
    Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim Do K (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10:3852–3856CrossRefGoogle Scholar
  25. 25.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRefGoogle Scholar
  26. 26.
    Huang Y, Jiang R, Bao SJ, Dong Z, Cao Y, Jia D, Guo Z (2009) Synthesis and electrochemical properties of nanostructured LiAl x Mn2 − x O4 − y Br y particles. J Solid State Electrochem 13:799–805CrossRefGoogle Scholar
  27. 27.
    Naghash AR, Lee JY (2000) Preparation of spinel lithium manganese oxide by aqueous co-precipitation. J Power Sources 85:284–293CrossRefGoogle Scholar
  28. 28.
    Kovacheva D, Gadjov H, Petrov K, Mandal S, Lazarraga MG, Pascual L, Amarilla JM, Rojas RM, Herrero P, Rojo JM (2002) Synthesizing nanocrystalline LiMn2O4 by a combustion route. J Mater Chem 12:1184–1188CrossRefGoogle Scholar
  29. 29.
    Liu XM, Huang ZD, Oh S, Ma PC, Chan PCH, Vedam GK, Kang K, Kim JK (2010) Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J Power Sources 195:4290–4296CrossRefGoogle Scholar
  30. 30.
    Jia X, Yan C, Chen Z, Wang R, Zhang Q, Guo L, Wei F, Lu Y (2011) Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chem Commun 47:9669–9671CrossRefGoogle Scholar
  31. 31.
    Akhoon SA, Rubab S, Shah MA (2017) Enhanced cycling properties and better rate capabilities of Al-doped LiMn2O4 nanorods and nanospheres. Mater Res Express 4:105016Google Scholar
  32. 32.
    Liu H, Zhou Y, Song W (2018) Facile synthesis of porous LiMn2O4 micro-/nano-hollow spheres with extremely excellent cycle stability as cathode of lithium-ion batteries. J Solid State Electrochem 22:2617–2622CrossRefGoogle Scholar
  33. 33.
    Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374CrossRefGoogle Scholar
  34. 34.
    Nageswara Rao B, Venkateswarlu M, Satyanarayana N (2014) Structural, electrical and dielectric studies of nanocrystalline LiMnPO4 particles. Ionics 20:927–934CrossRefGoogle Scholar
  35. 35.
    Tang W, Hou Y, Wang F, Liu L, Wu Y, Zhu K (2013) LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett 13:2036–2040CrossRefGoogle Scholar
  36. 36.
    Wang Y, Wang Y, Jia D, Peng Z, Xia Y, Zheng G (2014) All-nanowire based Li-ion full cells using homologous Mn2O3 and LiMn2O4. Nano Lett 14:1080–1084CrossRefGoogle Scholar
  37. 37.
    Jayaraman S, Aravindan V, Kumar PS, Ling WC, Ramakrishna S, Madhavi S (2013) Synthesis of porous LiMn2O4 hollow nanofibers by electrospinning with extraordinary lithium storage properties. Chem Commun 49:6677–6679CrossRefGoogle Scholar
  38. 38.
    Iqbal MJ, Ahmad Z (2008) Electrical and dielectric properties of lithium manganate nanomaterials doped with rare-earth elements. J Power Sources 179:763–769CrossRefGoogle Scholar
  39. 39.
    Iqbal MJ, Zahoor S (2007) Synthesis and characterization of nanosized lithium manganate and its derivatives. J Power Sources 165:393–397CrossRefGoogle Scholar
  40. 40.
    Shibeshi PT, Asefa A (2018) Sol-gel combustion synthesis and characterization of LiMn1.95-xCo0.05CrxO4 cathode materials. Int Res J Eng Technol 5:3573–3578Google Scholar
  41. 41.
    Wu HM, Tu JP, Chen XT, Li Y, Zhao XB, Cao GS (2007) Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J Solid State Electrochem 11:173–176CrossRefGoogle Scholar
  42. 42.
    Wei YJ, Yan LY, Wang CZ, Xu XG, Wu F, Chen G (2004) Effects of Ni doping on [MnO6] octahedron in LiMn2O4. J Phys Chem B 108:18547–18551CrossRefGoogle Scholar
  43. 43.
    Fang TT, Chung HY (2008) Reassessment of the electronic-conduction behavior above the verwey-like transition of Ni2+- and Al3+-doped LiMn2O4. J Am Ceram Soc 91(1):342–345CrossRefGoogle Scholar
  44. 44.
    Rougier A, Striebel KA, Wen SJ, Richardson TJ, Reade RP, Cairns E (1998) Characterization of pulsed laser-deposited LiMn2O4 thin films for rechargeable lithium batteries. J Appl Surf Sci 134:107–115CrossRefGoogle Scholar
  45. 45.
    Julien C (2000) Local cationic environment in lithium nickel–cobalt oxides used as cathode materials for lithium batteries. Solid State Ionics 136-137:887–896CrossRefGoogle Scholar
  46. 46.
    Julien CM, Massot M (2003) Raman spectroscopic studies of lithium manganates with spinel structure. J. Phys.: Condens Matter 15:3151–3162Google Scholar
  47. 47.
    Ramana CV, Massot M, Julien CM (2005) XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf Interface Anal 37:412–416CrossRefGoogle Scholar
  48. 48.
    Julien C, Massot M, Rangan S, Lemal M, Guyomard D (2002) Study of structural defects in γ-MnO2 by Raman spectroscopy. J Raman Spectrosc 33:223–228CrossRefGoogle Scholar
  49. 49.
    Liu JR, Wang M, Lin X, Yin DC, Huang WD (2002) Citric acid complex method of preparing inverse spinel LiNiVO4 cathode material for lithium batteries. J Power Sources 108:113–116CrossRefGoogle Scholar
  50. 50.
    Misushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789CrossRefGoogle Scholar
  51. 51.
    Tian C, Chan SW (2000) Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3. Solid State Ionics 134:89–102CrossRefGoogle Scholar
  52. 52.
    Singh G, Panwar A, Sil A, Ghosh S (2009) Synthesis and characterization of LiMn2O4 nanoparticles using citric acid as chelating agent. Adv Mater Res 67:227–232CrossRefGoogle Scholar
  53. 53.
    Bakierska M, Molenda M, Dziembaj R (2014) Optimization of sulphur content in LiMn2O4-ySy spinels as cathode materials for lithium-ion batteries. Procedia Eng 98:20–27Google Scholar
  54. 54.
    Funke K (1993) Jump relaxation in solid electrolytes. Prog Solid State Chem 22(1993):111–195CrossRefGoogle Scholar
  55. 55.
    Elliot SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217CrossRefGoogle Scholar
  56. 56.
    Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRefGoogle Scholar
  57. 57.
    Nageswara Rao B, Venkateswarlu M, Satyanarayana N (2014) Electrical and dielectric properties of rare earth oxides coated LiCoO2 particles. Ionics 20:175–181CrossRefGoogle Scholar
  58. 58.
    Liu C, Angell CA (1986) Mechanical vs electrical relaxation in Agl-based fast ion conducting glasses. J Non-Cryst Solids 83:162–184CrossRefGoogle Scholar
  59. 59.
    Sidebottom DL, Green PF, Brow RK (1995) Comparison of KWW and power law analyses of an ion-conducting glass. J Non-Cryst Solids 183:151–160CrossRefGoogle Scholar
  60. 60.
    Nagi KL, Mundy JN, Jain H, Kanert O, Jollenbeck GB (1989) Correlation between the activation enthalpy and Kohlrausch exponent for ionic conductivity in alkali aluminogermanate glasses. Phys Rev B 39:6169–6179CrossRefGoogle Scholar
  61. 61.
    Abdullah MA, Yusoff AN (1996) Complex impedance and dielectric properties of an Mg-Zn ferrite. J Alloys Compd 233:129–135CrossRefGoogle Scholar
  62. 62.
    Angappan S, Berchmans LJ, Augustin CO (2004) Sintering behaviour of MgAl2O4—a prospective anode material. Mater Lett 58:2283–2289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nageswara Rao B.
    • 1
    Email author
  • Narsimulu D.
    • 2
  • Srinadhu E.S.
    • 3
  • Satyanarayana N.
    • 2
  1. 1.Division of Physics, Department of Sciences & HumanitiesVignan’s Foundation for Science Technology & Research UniversityGunturIndia
  2. 2.Department of PhysicsPondicherry UniversityPondicherryIndia
  3. 3.Department of Physics & AstronomyClemson UniversityClemsonUSA

Personalised recommendations