Advertisement

Ionics

, Volume 25, Issue 2, pp 583–592 | Cite as

Enhanced discharge capacity of Mg-air battery with addition of water dispersible nano MoS2 sheet in MgCl2 electrolyte

  • Arunkumar Prabhakaran Shyma
  • Siva Palanisamy
  • Naveenkumar Rajendhran
  • Rajendran VenkatachalamEmail author
Original Paper
  • 103 Downloads

Abstract

The aim of the present study is to increase the discharge capacity of Mg-air battery via electrolyte using water dispersible nano MoS2 sheet as electrocatalyst since MoS2 shows enhanced anodic behaviour. The nano MoS2 sheet was effectively synthesised by polymer exfoliation technique employing ball milling and then converted into water dispersible form by adjusting its pH value above 10. The structure, morphology, crystallinity, particle size distribution and surface area of water dispersible nano MoS2 (WDNMoS2) were characterised comprehensively employing different characterisation techniques. A detailed analysis of corrosion, impedance and charge discharge performance of Mg-air battery were carried out with and without water dispersible nano MoS2 (WDNMoS2) in MgCl2 electrolytes. The charge-discharge capacity of Mg-air battery is enhanced nearly 18% in case of addition of WDNMoS2 (1170 mAh g−1) to aqueous MgCl2 electrolytes compared with aqueous MgCl2 electrolyte (990 mAh g−1).

Graphical abstract

Keywords

Magnesium-air battery Water dispersible MoS2 MgCl2 electrolyte Polymer exfoliation Heterogeneous electron transfer 

References

  1. 1.
    Kim K, Cho YH, Eom SW, Kim HS, Yeum JH (2010) Anions of organic acids as gas suppressants in zinc–air batteries. Mater Res Bull 45:262–264CrossRefGoogle Scholar
  2. 2.
    Siva P, Prabhu P, Selvam M, Karthik S, Rajendran (2017) V Electrocatalytic conversion of carbon dioxide to urea on nano FeTiO3 surface. Ionics 23:1871–1878CrossRefGoogle Scholar
  3. 3.
    Smith JG, Naruse J, Hiramatsu H, Seigel DJ (2016) Theoretical limiting potential in mg/O2 batteries. Chem Mater 28:1390–1401CrossRefGoogle Scholar
  4. 4.
    Song SQ, Liang L, Zhou W, Sun G, Xin Q, Stergiopolous V, Tsiakaras P (2005) Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance. J Power Sources 145:495–501CrossRefGoogle Scholar
  5. 5.
    Wu Y, Wang T, Zhang Y, Xin S, He X, Zhang D, Shuri J (2016) Electrocatalytic performance of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries. Sci Rep 2:1–8Google Scholar
  6. 6.
    Bucur CB, Gregory T, Oliver AG, Muldoon J (2015) Confession of a magnesium battery. J Phys Chem Lett 18:3578–3591CrossRefGoogle Scholar
  7. 7.
    Zhang T, Tao Z, Chen J (2014) Magnesium air batteries: from principle to application. Mater Horiz 1:196–206CrossRefGoogle Scholar
  8. 8.
    Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells fundamentals, technology and applications. Wiley, ChichesterGoogle Scholar
  9. 9.
    Siva P, Prabu P, Karthik S, Arunkumar PS, Rajendran V (2018) Ultrathin sheet structure Ni-MoS2 anode and MnO2/water dispersion graphene cathode for modern asymmetrical coin cell supercapacitor. J Alloy Compd 731:936–944Google Scholar
  10. 10.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRefGoogle Scholar
  11. 11.
    Merk D, Hu X (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4:3878CrossRefGoogle Scholar
  12. 12.
    Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136CrossRefGoogle Scholar
  13. 13.
    Tang Q, Jiang D (2016) Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal 6:4953–4961CrossRefGoogle Scholar
  14. 14.
    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Weng F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275CrossRefGoogle Scholar
  15. 15.
    Hone J, Shane J, Heinz TF, Make KF, Lee C (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRefGoogle Scholar
  16. 16.
    Kibsgaard J, Jramillo TF, Besenbacher F (2014) Building an appropriate active site motif inti hydrogen evolution catalyst with thiomolybdate [Mo3S13]2−. Nat Chem 6:248–253CrossRefGoogle Scholar
  17. 17.
    Kibsgaard J, Chen Z, Reinekce BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969CrossRefGoogle Scholar
  18. 18.
    Liu L, Kumar SB, Ouyang Y, Guo J (2011) Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electron Devices 58:3042–3047CrossRefGoogle Scholar
  19. 19.
    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang Y (2011) First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, ta; X=S, se, Te) monolayers. Physica B 406:2254–2260CrossRefGoogle Scholar
  20. 20.
    Ataca C, Sahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999CrossRefGoogle Scholar
  21. 21.
    Lebègue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79:15409Google Scholar
  22. 22.
    Frey GL, Reynolds KJ, Friend RH, Cohen H, Feldman Y (2003) Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. J Am Chem Soc 125:5998–6007CrossRefGoogle Scholar
  23. 23.
    Ramasubramaniam A (2012) Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86:115409CrossRefGoogle Scholar
  24. 24.
    Cheiwchanchamnangij T, Lambrecht WRL (2012) Quasiparticle band structure calculation of monolayer, bilayer and bulk MoS2. Phys Rev B 85:205302CrossRefGoogle Scholar
  25. 25.
    Li H (2012) Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8:63–67CrossRefGoogle Scholar
  26. 26.
    Xiao D, Liu GB, Feng W, Xu X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:196802CrossRefGoogle Scholar
  27. 27.
    Zhang H, Tian Y, Zhao J, Cai Q, Chen Z (2017) Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N– and P–Doping. Electrochim Acta 225:543–550CrossRefGoogle Scholar
  28. 28.
    Gu H, Huang Y, Zuo L, Fan W, Liu T (2016) Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS2: advanced electrocatalysts for hydrogen evolution reaction. Electrochim Acta 219:604–613CrossRefGoogle Scholar
  29. 29.
    Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Vivek B, Shenoy, Chhowalla M (2013) Conducting MoS2 Nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227CrossRefGoogle Scholar
  30. 30.
    Vattikuti SVP, Byon C, Reddy CV, Venkatesh B, Shim J (2015) Synthesis and structural chracterisation of MoS2 nanosphere and nanosheets using solvothermal method. J Mater Sci 50:5024–5038CrossRefGoogle Scholar
  31. 31.
    Wang D, Zhang X, Shena Y, Wuab Z (2016) Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts. RSC Adv 6:16656–16661CrossRefGoogle Scholar
  32. 32.
    Windom BC, Sawyer WG, Hahn DW (2011) A Raman spectroscopic study of MoS2 and MoO3: applications to Tribological systems. Tribol Lett 42:301–310CrossRefGoogle Scholar
  33. 33.
    Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390CrossRefGoogle Scholar
  34. 34.
    Naveenkumar R, Siva P, Prabu P, Rajendran V (2018) Enhancing the tribological characteristics of the lubricant oil using Ni-promoted MoS2 nanosheets as nano additives. Tribol Int 118:314–328Google Scholar
  35. 35.
    Panitz JKG, Pope LE, Lyons JE, Staley DJ (1988) The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments. J Vac Sci Technol A 63:1166–1170CrossRefGoogle Scholar
  36. 36.
    Vattikuti SVP, Byon C (2015) Synthesis and characterization of molybdenum disulfide Nanoflowers and Nanosheets: Nanotribology. J Nanomater 2015:1–11Google Scholar
  37. 37.
    Nagaraju G, Tharamani CN, Chandrappa GT, Livage J (2007) Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate. Nanoscale Res Lett 2:461–468CrossRefGoogle Scholar
  38. 38.
    Zhou X, Wana L, Guo YG (2013) Synthesis of MoS2 nanosheet–graphene nanosheethybrid materials for stable lithium storage. Chem Commun 49:1838–1840CrossRefGoogle Scholar
  39. 39.
    Maugéa F, Lamotte J, Nesterenko NS, Manoilova O, Tsyganenko AA (2001) FT-IR study of surface properties of unsupported MoS2. Catal Today 70:271–284CrossRefGoogle Scholar
  40. 40.
    Jain A, Tripathi SK (2015) Nanoporous activated carbon from sugra cane waste for supercapacitor application. J Energy Storage 4:121–127CrossRefGoogle Scholar
  41. 41.
    Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H (2012) Electrochemically reduced single-layer MoS2 Nanosheets: characterization, properties, and sensing applications. Small 8:2264–2270CrossRefGoogle Scholar
  42. 42.
    Li T, Galli G (2007) Electronic properties of MoS2 nanoparticles. J Phys Chem C 111:16192–16196CrossRefGoogle Scholar
  43. 43.
    Bott AW (1998) Electrochemistry of semiconductors. Curr Sep 17:87–91Google Scholar
  44. 44.
    Bothra P, Pandey M, Pati SK (2016) Size-selective electrocatalytic activity of (Pt)n/MoS2 for oxygen reduction reaction. Catal Sci Technol 6:6389–6395CrossRefGoogle Scholar
  45. 45.
    Hu Y, Hua DHC (2016) Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for proton exchange membrane fuel cells. Sci Rep 6:1–10CrossRefGoogle Scholar
  46. 46.
    Wu J, Liu M, Chatterjee K, Hackenberg KP, Shen J, Zou X, Yan Y, Lou J, Ajayan PM (2016) Exfoliated 2D transition metal disulfides for enhanced Electrocatalysis of oxygen evolution reaction in acidic medium. Adv Mater Interfaces 3:1500669CrossRefGoogle Scholar
  47. 47.
    Chia X (2014) Electrochemistry of MoS2 and its activation for electrochemical applications. Nanyang Technological University, SingaporeGoogle Scholar
  48. 48.
    Ghuman KK, Yadav S, Singh CV (2015) Adsorption and dissociation of H2O on Monolayered MoS2 edges: energetics and mechanism from ab initio simulations. J Phys Chem C 119:6518–6529CrossRefGoogle Scholar
  49. 49.
    Richey FW, McCloskey BD, Luntz AC (2016) Mg anode corrosion in aqueous electrolytes and implications for mg-air batteries. J Electrochem Soc 163:958–963CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Arunkumar Prabhakaran Shyma
    • 1
  • Siva Palanisamy
    • 1
  • Naveenkumar Rajendhran
    • 1
  • Rajendran Venkatachalam
    • 2
    Email author
  1. 1.KS Rangasamy College of TechnologyCentre for Nano Science and TechnologyTiruchengodeIndia
  2. 2.Dr. N. G. P Arts and Science CollegeCentre for Nano Science and TechnologyCoimbatoreIndia

Personalised recommendations