Advertisement

Ionics

, Volume 25, Issue 2, pp 737–745 | Cite as

Enhanced photoelectrochemical oxidation of alkali water over cobalt phosphate (Co-Pi) catalyst-modified ZnLaTaON2 photoanodes

  • Maged N. Shaddad
  • Prabhakarn ArunachalamEmail author
  • Abdullah M. Al-Mayouf
  • Mohamed A. Ghanem
  • Abdulrahman I. Alharthi
Original Paper
  • 69 Downloads

Abstract

Zinc lanthanum tantalum oxynitride [ZnLaTaON2] powders were synthesized by conventional solid state reaction. ZnLaTaON2 photoelectrodes were prepared by electrophoretic deposition of ZnLaTaON2 suspension in acetone onto ITO substrate. The photoelectrodes of ZnLaTaON2 were established to reveal photoelectrochemical properties for water oxidation reaction. Moreover, a cobalt phosphate (Co-Pi) was loaded on ZnLaTaON2 photoelectrodes via photodeposition method to enhance the photoelectrochemical water oxidation performances. Photocurrent voltage characteristics of the Co-Pi/ZnLaTaON2 photoelectrodes were enhanced with its effect which is more evidenced at lower water oxidation potentials. A relatively stable photocurrent density of 5 mA/cm2 at 1.5 V vs RHE was attained with the support of electron donor in alkaline phosphate solution. Comparatively, in Co-Pi/ZnLaTaON2 photoelectrodes, approximately threefold enhancement was noticed at 1.8 VRHE in assessment with parent photoelectrode. On the other hand, Co-Pi/ZnLaTaON2 photoelectrodes have been shown as an alternative pathway to improve the photoelectrochemical current gain through the PEC water oxidation reaction.

Keywords

Photoelectrochemistry Cobalt phosphate Water oxidation Electrophoresis 

Notes

Funding information

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group No. RG-1438-087.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11581_2018_2688_MOESM1_ESM.pdf (287 kb)
ESM 1 (PDF 287 kb)

References

  1. 1.
    Arunachalam P, Zhang S, Abe T, Komura M, Iyoda T, Nagai K (2016) Weak visible light (∼ mW/cm2) organophotocatalysis for mineralization of amine, thiol and aldehyde by biphasic cobalt phthalocyanine/fullerene nanocomposites. Appl Catal B Environ 193:240–247Google Scholar
  2. 2.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278Google Scholar
  3. 3.
    Takata T, Hitoki G, Kondo JN, Hara M, Kobayashi H, Domen K (2007) Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res Chem Intermed 33:13–25Google Scholar
  4. 4.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38Google Scholar
  5. 5.
    Gratzel M (2001) Photoelectrochemical cells. Nature 15:338–344Google Scholar
  6. 6.
    Watanabe T, Fujishima A, Honda K (1976) Photoelectrochemical reactions at SrTiO3 single crystal electrode. Bull Chem Soc Jpn 49:355–358Google Scholar
  7. 7.
    Kudo A (2006) Development of photocatalyst materials for water splitting. Int J Hydrog Energy 31(2):197–202Google Scholar
  8. 8.
    Melián EP, López CR, Méndez AO, Díaz OG, Suárez MN, Rodríguez JD, Navío J, Hevia DF (2013) Hydrogen production using Pt-loaded TiO2 photocatalysts. Int J Hydrog Energy 38(27):11737–11748Google Scholar
  9. 9.
    Yuan Y, Zhang X, Liu L, Jiang X, Lv J, Li Z, Zou Z (2008) Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int J Hydrog Energy 33(21):5941–5946Google Scholar
  10. 10.
    Amano F, Li D, Ohtani B (2010) Fabrication and photoelectrochemical property of tungsten (VI) oxide films with a flake-wall structure. Chem Commun 46(16):2769–2771Google Scholar
  11. 11.
    Hu Y-S, Kleiman-Shwarsctein A, Stucky GD, McFarland EW (2009) Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride. Chem Commun 19:2652–2654Google Scholar
  12. 12.
    Sayama K, Nomura A, Zou Z, Abe R, Abe Y, Arakawa H (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 23:2908–2909Google Scholar
  13. 13.
    Tang Y, Wang R, Yang Y, Yan D, Xiang X (2016) Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Appl Mater Interfaces 8(30):19446–19455Google Scholar
  14. 14.
    Zhang X, Wang R, Li F, An Z, Pu M, Xiang X (2017) Enhancing photoelectrochemical water oxidation efficiency of BiVO4 photoanodes by a hybrid structure of layered double hydroxide and graphene. Ind Eng Chem Res 56(38):10711–10719Google Scholar
  15. 15.
    He W, Wang R, Zhang L, Zhu J, Xiang X, Li F (2015) Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls. J Mater Chem A 3(35):17977–17982Google Scholar
  16. 16.
    He W, Wang R, Zhou C, Yang J, Li F, Xiang X (2015) Controlling the structure and photoelectrochemical performance of BiVO4 photoanodes prepared from electrodeposited bismuth precursors: effect of zinc ions as directing agent. Ind Eng Chem Res 54(43):10723–10730Google Scholar
  17. 17.
    He W, Yang Y, Wang L, Yang J, Xiang X, Yan D, Li F (2015) Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy. ChemSusChem 8(9):1568–1576Google Scholar
  18. 18.
    Xiang X, Fielden J, Rodríguez-Córdoba W, Huang Z, Zhang N, Luo Z, Musaev GM, Lian T, Hill CL (2013) Electron transfer dynamics in semiconductor–chromophore–polyoxometalate catalyst photoanodes. J Phys Chem C 117(2):918–926Google Scholar
  19. 19.
    Li Y, Zhang L, Xiang X, Yan D, Li F (2014) Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J Mater Chem A 2(33):13250–13258Google Scholar
  20. 20.
    Tang Y, Fang X, Zhang X, Fernandes G, Yan Y, Yan D, Xiang X, He J (2017) Space-confined earth-abundant bifunctional electrocatalyst for high-efficiency water splitting. ACS Appl Mater Interfaces 9(42):36762–36771Google Scholar
  21. 21.
    Priya A, Arunachalam P, Selvi A, Madhavan J, Al-Mayouf AM, Ghanem MA (2018) A low-cost visible light active BiFeWO6/TiO2 nanocomposite with an efficient photocatalytic and photoelectrochemical performance. Opt Mater 81:84–92Google Scholar
  22. 22.
    Shaddad MN, Cardenas-Morcoso D, Arunachalam P, Garcia-Tecedor M, Ghanem MA, Bisquert J, Al-Amayouf A, Gimenez S (2018) Enhancing the optical absorption and interfacial properties of BiVO4 with Ag3PO4 nanoparticles for efficient water splitting. J Phys Chem C 122(22):11608–11615Google Scholar
  23. 23.
    Amer MS, Ghanem MA, Al-Mayouf AM, Arunachalam P (2018) Low-symmetry mesoporous titanium dioxide (lsm-TiO2) electrocatalyst for efficient and durable oxygen evolution in aqueous alkali. J Electrochem Soc 165(7):H300–H309Google Scholar
  24. 24.
    Ghanem MA, Arunachalam P, Amer MS, Al-Mayouf AM (2018) Mesoporous titanium dioxide photoanodes decorated with gold nanoparticles for boosting the photoelectrochemical alkali water oxidation. Mater Chem Phys 213:56–66Google Scholar
  25. 25.
    Malathi A, Madhavan J, Ashokkumar M, Arunachalam P (2018) A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl Catal A Gen 555:47–74Google Scholar
  26. 26.
    Scaife D (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25(1):41–54Google Scholar
  27. 27.
    Abe R, Takata T, Sugihara H, Domen K (2005) The use of TiCl4 treatment to enhance the photocurrent in a TaON photoelectrode under visible light irradiation. Chem Lett 34(8):1162–1163Google Scholar
  28. 28.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440(7082):295Google Scholar
  29. 29.
    Wang X, Maeda K, Lee Y, Domen K (2008) Enhancement of photocatalytic activity of (Zn1+ xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chem Phys Lett 457(1–3):134–136Google Scholar
  30. 30.
    Arunachalam P, Amer MS, Ghanem MA, Al-Mayouf AM, Zhao D (2017) Activation effect of silver nanoparticles on the photoelectrochemical performance of mesoporous TiO2 nanospheres photoanodes for water oxidation reaction. Int J Hydrog Energy 42(16):11346–11355Google Scholar
  31. 31.
    Zhang L, Song Y, Feng J, Fang T, Zhong Y, Li Z, Zou Z (2014) Photoelectrochemical water oxidation of LaTaON2 under visible-light irradiation. Int J Hydrog Energy 39(15):7697–7704Google Scholar
  32. 32.
    Urabe H, Hisatomi T, Minegishi T, Kubota J, Domen K (2015) Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discuss 176:213–223Google Scholar
  33. 33.
    Maeda K, Higashi M, Siritanaratkul B, Abe R, Domen K (2011) SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J Am Chem Soc 133(32):12334–12337Google Scholar
  34. 34.
    Hisatomi T, Katayama C, Moriya Y, Minegishi T, Katayama M, Nishiyama H, Yamada T, Domen K (2013) Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy Environ Sci 6(12):3595–3599Google Scholar
  35. 35.
    Arunachalam P, Shaddad MN, Ghanem MA, Al-Mayouf AM, Weller MT (2018) Zinc tantalum Oxynitride (ZnTaO2N) photoanode modified with cobalt phosphate layers for the photoelectrochemical oxidation of alkali water. Nanomaterials 8(1):48Google Scholar
  36. 36.
    Maeda K, Domen K (2012) Water oxidation using a particulate BaZrO3-BaTaO2N solid-solution photocatalyst that operates under a wide range of visible light. Angew Chem Int Ed 51(39):9865–9869Google Scholar
  37. 37.
    Minegishi T, Nishimura N, Kubota J, Domen K (2013) Photoelectrochemical properties of LaTiO 2 N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem Sci 4(3):1120–1124Google Scholar
  38. 38.
    Porter SH, Huang Z, Woodward PM (2013) Study of anion order/disorder in RTaN2O (R= La, Ce, Pr) perovskite nitride oxides. Cryst Growth Des 14(1):117–125Google Scholar
  39. 39.
    Zhang F, Yamakata A, Maeda K, Moriya Y, Takata T, Kubota J, Teshima K, Oishi S, Domen K (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134(20):8348–8351Google Scholar
  40. 40.
    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111(2):1042–1048Google Scholar
  41. 41.
    Arunachalam P, Ghanem MA, Al-Mayouf AM, Al-shalwi M (2017) Enhanced electrocatalytic performance of mesoporous nickel-cobalt oxide electrode for methanol oxidation in alkaline solution. Mater Lett 196:365–368Google Scholar
  42. 42.
    Ghanem MA, Al-Mayouf AM, Arunachalam P, Abiti T (2016) Mesoporous cobalt hydroxide prepared using liquid crystal template for efficient oxygen evolution in alkaline media. Electrochim Acta 207:177–186Google Scholar
  43. 43.
    Theerthagiri J, Thiagarajan K, Senthilkumar B, Khan Z, Senthil RA, Arunachalam P, Madhavan J, Ashokkumar M (2017) Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications. ChemistrySelect 2(1):201–210Google Scholar
  44. 44.
    Arunachalam P, Al-Mayouf A, Ghanem MA, Shaddad MN, Weller MT (2016) Photoelectrochemical oxidation of water using La (Ta, Nb)O2N modified electrodes. Int J Hydrog Energy 41(27):11644–11652Google Scholar
  45. 45.
    Rooke J, Weller M (2003) Synthesis and characterisation of perovskite-type oxynitrides. In: Solid state phenomena, Trans Tech Publ, p 417–422Google Scholar
  46. 46.
    Hojamberdiev M, Yubuta K, Vequizo JJM, Yamakata A, Oishi S, Domen K, Teshima K (2015) NH3-assisted flux growth of cube-like BaTaO2N submicron crystals in a completely ionized nonaqueous high-temperature solution and their water splitting activity. Cryst Growth Des 15(9):4663–4671Google Scholar
  47. 47.
    Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K). J Phys Chem B 105(19):4285–4292Google Scholar
  48. 48.
    McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) EPR evidence for Co (IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132(20):6882–6883Google Scholar
  49. 49.
    Zhong DK, Cornuz M, Sivula K, Grätzel M, Gamelin DR (2011) Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 4(5):1759–1764Google Scholar
  50. 50.
    McDonald KJ, Choi K-S (2011) Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem Mater 23(7):1686–1693Google Scholar
  51. 51.
    Walsh D, Sanchez-Ballester NM, Ting VP, Hall SR, Terry LR, Weller MT (2015) Visible light promoted photocatalytic water oxidation: effect of metal oxide catalyst composition and light intensity. Cat Sci Technol 5(10):4760–4764Google Scholar
  52. 52.
    Butler M, Ginley D (1978) Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J Electrochem Soc 125(2):228–232Google Scholar
  53. 53.
    Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co−Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132(12):4202–4207Google Scholar
  54. 54.
    Li P, Jin Z, Xiao D (2014) A one-step synthesis of Co–P–B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. J Mater Chem A 2(43):18420–18427Google Scholar
  55. 55.
    Ai G, Mo R, Li H, Zhong J (2015) Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 7(15):6722–6728Google Scholar
  56. 56.
    Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 4(12):5028–5034Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maged N. Shaddad
    • 1
  • Prabhakarn Arunachalam
    • 1
    Email author
  • Abdullah M. Al-Mayouf
    • 1
  • Mohamed A. Ghanem
    • 1
  • Abdulrahman I. Alharthi
    • 2
  1. 1.Electrochemistry Research Group, Chemistry Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.The Department of Chemistry, College of Science and HumanitiesPrince Sattam Bin Abdulaziz UniversityAL-KharjSaudi Arabia

Personalised recommendations