Advertisement

Ionics

pp 1–11 | Cite as

The effects of PVAc on surface morphological and electrochemical performance of P(VdF-HFP)-based blend solid polymer electrolytes for lithium ion-battery applications

  • M. Sasikumar
  • A. Jagadeesan
  • M. Raja
  • R. Hari Krishna
  • P. Sivakumar
Original Paper
  • 63 Downloads

Abstract

Solid polymer electrolytes (SPEs) have attracted ever increasing attention due to their huge potential applications in all-solid-state Li-ion batteries. High ionic conductivity and large extended electrochemical stability of SPEs are crucial for the high performance of Li-ion batteries. In this article, we demonstrate the effects of PVAc in P(VdF-HFP)-LiTFSI-EC complex, resulting in blend solid polymer electrolytes (BSPEs), were successfully prepared via solution casting technique. This method utilized the advantages of both polymers, resulting in superior ionic conductivity with enhanced mechanical integrity. Among the various concentrations, 10 wt% PVAc in P(VdF-HFP)-LiTFSI-EC exhibited a maximum ionic conductivity of 1.1 × 10−3 S cm−1, which is attributable to the suppression of PVdF crystalline phase and high Li-salt dissociation. The complex formation, surface morphology, thermal behavior, and thermal stability of BSPEs were systematically analyzed by FTIR, SEM, DSC, and TGA respectively. In addition, this sample shows a good electrochemical stability window (4.7 V) and Li transference number (0.29), which suggest that this could be a promising candidate for Li-ion batteries.

Keywords

PVAc P(VdF-HFP) Blend solid polymer electrolytes Ionic conductivity Thermal stability Electrochemical stability window 

Notes

Acknowledgments

M. Raja would like to thank DST-SERB for N-PDF Scheme of India. The authors are grateful to Dr. Helen Annal Therese (NRC, SRM-IST, Kattankulathur, Chennai) for his help in lithium-ion cell fabrication and Dr. M. N. Chandra Prabha (MSRIT) Bangalore for helpful discussion.

Funding information

M. Sasikumar received financial support from the University Grants Commission (No. F. MRP-5633/15 (SERO/UGC)) of India. P. Sivakumar received financial support from the University Grants Commission (UGC –MRP NO. F. 42-807/2013 (SR)), New Delhi, India.

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Ramesh S, Ng H-M (2011) An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ionics 192:2–5CrossRefGoogle Scholar
  2. 2.
    Kalnaus S, Sabau A-S, Tenhaeff W-E, Dudney N-J, Daniel C (2012) Design of composite polymer electrolytes for Li ion batteries based on mechanical stability of criteria. J Power Sources 20:280–287CrossRefGoogle Scholar
  3. 3.
    Sun B, Mindemark J, Edstrdm K, Brandell D (2014) Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262:738–742CrossRefGoogle Scholar
  4. 4.
    Baskaran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari M-S (2004) Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)–N,N–dimethylformamide–LiClO4 polymer gel electrolytes. J Power Sources 134:235–240CrossRefGoogle Scholar
  5. 5.
    Sun J, Liao X, Minor A-M, Balsara N-P, Zuckermann R-N (2014) Morphology-conductivity relationship in crystalline and amorphous sequence. J Am Chem Soc 136:14990–14997CrossRefGoogle Scholar
  6. 6.
    Yang L-Y, Wei D-X, Xiu M, Yao Y-F, Chen Q (2014) Transferring lithium ions in nanochannels: a PEO/Li+ solid polymer electrolyte design. Angew Chem 126:3705–3709CrossRefGoogle Scholar
  7. 7.
    Gupta R-K, Jung H-Y, Whang C-M (2002) Transport properties of a new Li+ ion-conducting ormolyte: (SiO2–PEG)–LiCF3SO3. J Mater Chem 12:3779–3782CrossRefGoogle Scholar
  8. 8.
    Tao C, Gao M-H, Yin B-H, Li B, Huang Y-P, Xu G, Bao J-J (2017) A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim Acta 257:31–39CrossRefGoogle Scholar
  9. 9.
    Liu W, Liu N, Sun J, Hau P-C, Li Y, Lee H-W, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowires fillers. Nano Lett 15:2740–2745CrossRefGoogle Scholar
  10. 10.
    Zhang D, Zhang L, Yang K, Wang H, Yu C, Xu D, Xu B, Wang L-M (2017) Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium ion batteries. ACS Appl Mater Interfaces 9:36886–36896CrossRefGoogle Scholar
  11. 11.
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602CrossRefGoogle Scholar
  12. 12.
    Kesavan K, Mathew C-M, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly(vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25:1428–1434CrossRefGoogle Scholar
  13. 13.
    Deka M, Nath A-K, Kumar A (2009) Effect of dedoped (insulating) polyaniline nanofibers on the ionic transport and interfacial stability of poly(vinylidene fluoride-hexafluoropropylene) based composite polymer electrolyte membranes. J Membr Sci 327:188–194CrossRefGoogle Scholar
  14. 14.
    Ramesh S, Ling O-P (2010) Effect of ethylene carbonate on the ionic conduction in poly(vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes. Polym Chem 1:702–707CrossRefGoogle Scholar
  15. 15.
    Rajendran S, Kesavan K, Nithya R, Ulaganathan M (2012) Transport, structural and thermal studies on nanocomposite polymer blend electrolytes for Li-ion battery applications. Curr Appl Phys 12:789–793CrossRefGoogle Scholar
  16. 16.
    Arunkumar D, Selvasekarapandian S, Baskaran R, Savitha T, Nithya H (2012) Thermal, vibrational and Ac impedance studies on proton conducting polymer electrolytes based on poly(vinyl acetate). J Non-Cryst Solids 358:531–536CrossRefGoogle Scholar
  17. 17.
    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hatton T (2007) Structure, thermal and transport properties of PVAc–LiClO4 solid polymer electrolytes. J Phys Chem Solids 68:407–412CrossRefGoogle Scholar
  18. 18.
    Choi N-S, Lee Y-G, Park J-K, Ko J-M (2001) Preparation and electrochemical characteristic of plasticized polymer electrolytes based upon a P(VdF-co-HFP)/PVAc blend. Electrochim Acta 46:1581–1586CrossRefGoogle Scholar
  19. 19.
    Ulaganathan M, Rajendran S (2010) Preparation and characterizations of PVAc/P(VdF-HFP)-based polymer blend electrolytes. Ionics 16:515–521CrossRefGoogle Scholar
  20. 20.
    Nishimoto A, Agehara K, Furuya N, Watanabe T, Watanabe M (1999) High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32:1541–1548CrossRefGoogle Scholar
  21. 21.
    Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO4 polymer gel electrolytes. Electrochim Acta 49:2581–2589CrossRefGoogle Scholar
  22. 22.
    Ulaganathan M, Nithya R, Rajendran S, Raghu S (2012) Li-ion conduction on nanofiller incorporated PVdF-co-HFP based composite polymer blend electrolytes for flexible battery applications. Solid State Ionics 218:7–1CrossRefGoogle Scholar
  23. 23.
    Bormashenko Y, Pogreb R, Stanevsky O, Bormashenko E (2004) Vibrational spectrum of PVDF and its interpretation. Polym Test 23:791–796CrossRefGoogle Scholar
  24. 24.
    Sim L-N, Majid S-R, Arof A-K (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57–66CrossRefGoogle Scholar
  25. 25.
    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) ac impedance, DSC and FTIR investigations on (x)PVAc–(1−x)PVdF blends with LiClO4. Mater Chem Phys 98:55–61CrossRefGoogle Scholar
  26. 26.
    Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectrochim Acta A 65:1234–1240CrossRefGoogle Scholar
  27. 27.
    Elashmawi I-S, Hakeem N-A, Abdelrazek E-M (2008) Spectroscopic and thermal studies of PS/PVAc blends. Physica B 403:3547–3552CrossRefGoogle Scholar
  28. 28.
    Ramesh S, Liew C-W (2013) Dielectric and FTIR studies on blending of [xPMMA–(1 - x) PVC] with LiTFSI. Measurement 46:1650–1656CrossRefGoogle Scholar
  29. 29.
    Wong D-H-C, Vitale A, Devaux D, Taylor A, Pandya A-A, Hallinan D-T, Thelen J-L, Mecham S-J, Lux S-F, Lapides A-M, Resnick P-R, Meyer T-J, Kostecki R-M, Balsara N-P DeSimone J-M (2015) Phase behavior and electrochemical characterization of blends of perfluoropolyether, poly(ethylene glycol), and a lithium salt. Chem Mater 27:597–603CrossRefGoogle Scholar
  30. 30.
    Ikezawa Y, Nishi H (2008) In situ FTIR study of the Cu electrode/ethylene carbonate + dimethyl carbonate solution interface. Electrochim Acta 53:3663–3669CrossRefGoogle Scholar
  31. 31.
    Wen S-J, Richardson T-J, Ghantous D-I, Striebel K-A, Ross P-N, Cairns E-J-J (1996) FTIR characterization of PEO+LiN(CF3SO2)2 electrolytes. J Electroanal Chem 408:113–118CrossRefGoogle Scholar
  32. 32.
    Agrawal R-C, Pandey G-P (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001–223018CrossRefGoogle Scholar
  33. 33.
    Wang Z, Tang Z (2003) Characterization of the polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(vinyl pyrrolidone) for lithium ion battery. Mater Chem Phys 82:16–20CrossRefGoogle Scholar
  34. 34.
    Dias F-B, Plomp L, Veldhuis J-B-J (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191CrossRefGoogle Scholar
  35. 35.
    Kim K-M, Park N-G, Ryu K-S, Chong S-H (2006) Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. ElectrochimActa 51:5636–5564CrossRefGoogle Scholar
  36. 36.
    Aravindan V, Gnanaraj J, Lee Y-S, Madhavi S (2013) LiMnPO4a next generation lithium cathode material for lithium ion batteries. J Mater Chem A 1:3518–3539CrossRefGoogle Scholar
  37. 37.
    Wu N, Cao Q, Wang X, Chen Q (2011) Study of a novel porous gel polymer electrolyte based on electrospinning technique. Solid State Ionics 203:42–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Sasikumar
    • 1
  • A. Jagadeesan
    • 2
  • M. Raja
    • 3
  • R. Hari Krishna
    • 4
  • P. Sivakumar
    • 5
  1. 1.PG and Research Department of PhysicsBishop Heber CollegeTrichyIndia
  2. 2.PG and Research Department of PhysicsNehru Memorial CollegeTrichyIndia
  3. 3.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia
  4. 4.Department of ChemistryM.S. Ramaiah Institute of TechnologyBangaloreIndia
  5. 5.PG and Research Department of PhysicsPeriyar E. V. R CollegeTrichyIndia

Personalised recommendations