, Volume 24, Issue 10, pp 3281–3285 | Cite as

MOF-derived N-doped porous carbon anchoring Sn4P3 as an anode material for sodium ion batteries

  • Erzhuang Pan
  • Yuhong JinEmail author
  • Chenchen Zhao
  • Qianqian Chang
  • Mengqiu JiaEmail author
Short Communication


In this paper, MOF-derived N-doped porous carbon anchoring Sn4P3 (Sn4P3@NPC) composite is prepared via a low-temperature phosphidation reaction with SnO2@NPC composite as the precursor. The as-prepared Sn4P3@NPC composite exhibit a high stable capacity of 319 mAh g−1 at 0.1 A g−1 after 100 cycles and improved rate performance (the capacities of 365, 322, 260, 204, and 146 mAh g−1 at 0.1, 0.2, 0.5, 1, and 2 A g−1, respectively) for sodium ion batteries. The good electrochemical sodium storage performance of the Sn4P3@NPC composite anodes can be ascribed to the synergistic effect between porous N-doped carbon and high-active Sn4P3 nanoparticles.


Sn4P3 Metal-organic frameworks N-doped porous carbon Nanocrystalline materials Energy storage and conversion Sodium-ion batteries 



This work was supported by the Science and Technology Program of Beijing Municipal Education Commission (SQKM201710005007) and Basic Research Foundation of Beijing University of Technology (105000546317500).


  1. 1.
    Liu Y, Yu X, Fang Y, Zhu X, Bao J, Zhou X, Lou X (2018) Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2:725–773CrossRefGoogle Scholar
  2. 2.
    Liu X, Du Y, Hu L, Zhou X, Li Y, Dai Z, Bao J (2015) Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance. J Phys Chem C 119:5848–5854CrossRefGoogle Scholar
  3. 3.
    Liu X, Du Y, Xu X, Zhou X, Dai Z, Bao J (2016) Enhancing the anode performance of antimony through nitrogen-doped carbon and carbon nanotubes. J Phys Chem C 120:3214–3220CrossRefGoogle Scholar
  4. 4.
    Sun M, Liu H, Qu J, Li J (2016) Earth-rich transition metal phosphide for energy conversion and storage. Adv Energy Mater 6:1600087CrossRefGoogle Scholar
  5. 5.
    Li X, Elshahawy A, Guan C, Wang J (2017) Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13:1701530CrossRefGoogle Scholar
  6. 6.
    Liu S, Zhang H, Xu L, Ma L, Chen X (2016) Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J Power Sources 304:346–353CrossRefGoogle Scholar
  7. 7.
    Liu S, Zhang H, Xu L, Ma L, Hou X (2016) High Lithium storage performance of Mn-doped Sn4P3 nanoparticles. Electrochim Acta 210:888–896CrossRefGoogle Scholar
  8. 8.
    Liu J, Kopold P, Wu C, Aken P, Maier J, Yu Y (2015) Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials. Energy Environ Sci 8:3531–3538CrossRefGoogle Scholar
  9. 9.
    Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L (2016) Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv Energy Mater 6:1600376CrossRefGoogle Scholar
  10. 10.
    Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X (2017) Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv Sci 4:1600243CrossRefGoogle Scholar
  11. 11.
    Zou G, Hou H, Zhao G, Ge P, Yin D, Ji X (2018) N-rich carbon coated CoSnO3 derived from in situ construction of a co-MOF with enhanced sodium storage performance. J Mater Chem A 6:4839–4847CrossRefGoogle Scholar
  12. 12.
    Fu L, Tang K, Song K, Aken P, Yu Y, Maier J (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6:1384–1389CrossRefPubMedGoogle Scholar
  13. 13.
    Zou G, Hou H, Ge P, Huang Z, Zhao G, Yin D, Ji X (2018) Metal-organic framework-derived materials for sodium energy storage. Small 14:1702648CrossRefGoogle Scholar
  14. 14.
    Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1605820CrossRefGoogle Scholar
  15. 15.
    Dong S, Li C, Ge X, Li Z, Miao X, Yin L (2017) ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 6:6474–6482CrossRefGoogle Scholar
  16. 16.
    Tang J, Salunkhe R, Liu J, Torad N, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580CrossRefPubMedGoogle Scholar
  17. 17.
    Qian J, Xiong Y, Cao Y, Ai X, Yang H (2014) Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett 14:1865–1869CrossRefPubMedGoogle Scholar
  18. 18.
    Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi N, Jung Y, Ryu J, Oh S, Lee K (2014) Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater 26:4139–4144CrossRefPubMedGoogle Scholar
  19. 19.
    Usui H, Domi Y, Fujiwara K, Shimizu M, Yamamoto T, Nohira T, Hagiwara R, Sakaguchi H (2017) Charge–discharge properties of a Sn4P3 negative rlectrode in ionic liquid electrolyte for Na-ion batteries. ACS Energy Lett 2:1139–1143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical TechnologyBeijingChina
  2. 2.Beijing Guyue New Materials Research InstituteBeijing University of TechnologyBeijingChina

Personalised recommendations