Advertisement

Ionics

pp 1–11 | Cite as

A rechargeable Zn/graphite dual-ion battery with an ionic liquid-based electrolyte

  • Jiaxin Fan
  • Qiangqiang Xiao
  • Yaobing Fang
  • Li Li
  • Wenhui Yuan
Original Paper
  • 95 Downloads

Abstract

This work presents a Zn/graphite dual-ion battery using natural graphite as the cathode and metallic zinc as the anode, with ionic liquid-based electrolyte. Upon charge, the Zn2+ cations deposit on the zinc anode, and the trifluoromethanesulfonate (TfO) anions simultaneously intercalate into the graphite cathode; upon discharge, both the ions are released back into the electrolyte. The 0.2 M Zn(TfO)2/EMImTfO ionic liquid-based electrolyte exhibits a high electrochemical window of 2.8 V (vs. Zn2+/Zn) as well as a high conductivity of 7.3 ms cm−1. The deposition/stripping of zinc on a copper working electrode is systematically studied, which reveals that Zn2+ cations are mobile in the ionic liquid electrolyte, and zinc can be deposited and stripped in this electrolyte. The insertion/extraction of TfO into/from graphite is also investigated, demonstrating a reversible process. At a current of 0.2 mA cm−2 and within the voltage of 0.8–2.8 V, the Zn/graphite dual-ion cells exhibit a high sloping discharge plateau within 1.8–2.4 V (corresponding to a medium voltage of about 2.0 V), a discharge capacity of 33.7 mAh g−1, and an energy density of 65.1 Wh kg−1; cells deliver a cyclability of 93.5% Coulombic efficiency for 100 cycles. The SEM image reveals that the zinc deposits are compact and dense, and uniformly distribute on anodes with an average grain size of about 200 nm, without the formation of dendrites. The use of high-safety electrolyte and low-cost electrode materials may enable this cell configuration to be a promising candidate for future energy storage systems.

Keywords

Dual-ion battery Zinc-ion battery Anion intercalation Graphite cathode Trifluoromethanesulfonate 

Notes

Acknowledgements

We thank Miss Zhe Yuan for her help in improving the quality of this paper.

Funding information

This study received financial support from the Natural Science Foundation of Guangdong Province (No. 2016A030313475, China), Dongguan Science and Technology Project (No. 201521510201, China), and The Project of Science and Technology of Guangdong Province (No. 2015B010135009, China).

Supplementary material

11581_2018_2644_MOESM1_ESM.dtd (42 kb)
ESM 1 (DTD 42 kb)

References

  1. 1.
    Fan J, Liu Y, Zhang Z, Wang A, Li L, Yuan W (2017) Tetrabutylammonium fluoride as the electrolyte in aluminum cells. Chemelectrochem 4:3042–3046CrossRefGoogle Scholar
  2. 2.
    Wang J, Zhang G, Liu Z, Li H, Liu Y, Wang Z, Li X, Shih K, Mai L (2018) Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 44:272–278CrossRefGoogle Scholar
  3. 3.
    Liu Z, Peng W, Xu Z, Shih K, Wang J, Wang Z, Lv X, Chen J, Li X (2016) Molybdenum disulfide-coated lithium vanadium fluorophosphate anode: experiments and first-principles calculations. Chemsuschem 9:2122–2128CrossRefGoogle Scholar
  4. 4.
    Liu Z, Peng W, Shih K, Wang J, Wang Z, Guo H, Yan G, Li X, Song L (2016) A MoS2 coating strategy to improve the comprehensive electrochemical performance of LiVPO4F. J Power Sources 315:294–301CrossRefGoogle Scholar
  5. 5.
    Zhang G, Xiong T, Yan M, Xu Y, Ren W, Xu X, Wei Q, Mai L (2017) In operando probing of sodium-incorporation in NASICON nanomaterial: asymmetric reaction and electrochemical phase diagram. Chem Mater 29:8057–8064CrossRefGoogle Scholar
  6. 6.
    Muller S, Holzer F, Haas O (1998) Optimized zinc electrode for the rechargeable zinc–air battery. J Appl Electrochem 28:895–898CrossRefGoogle Scholar
  7. 7.
    Grgur BN, Gvozdenovic MM, Stevanovic J, Jugovic BZ, Marinovic VM (2008) Polypyrrole as possible electrode materials for the aqueous-based rechargeable zinc batteries. Electrochim Acta 53:4627–4632CrossRefGoogle Scholar
  8. 8.
    Xu C, Li B, Du H, Kang F (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Edit 51:933–935CrossRefGoogle Scholar
  9. 9.
    Ingale ND, Gallaway JW, Nyce M, Couzis A, Banerjee S (2015) Rechargeability and economic aspects of alkaline zinc–manganese dioxide cells for electrical storage and load leveling. J Power Sources 276:7–18CrossRefGoogle Scholar
  10. 10.
    Kordesch K, Weissenbacher M (1994) Rechargeable alkaline manganese dioxide/zinc batteries. J Power Sources 51:61–78CrossRefGoogle Scholar
  11. 11.
    Yang CC, Lin SJ (2002) Improvement of high-rate capability of alkaline Zn-MnO2 battery. J Power Sources 112:174–183CrossRefGoogle Scholar
  12. 12.
    Abbott AP, Barron JC, Ryder KS (2009) Electrolytic deposition of Zn coatings from ionic liquids based on choline chloride. T I Met Finish 87:201–207CrossRefGoogle Scholar
  13. 13.
    Simons TJ, Torriero AAJ, Howlett PC, MacFarlane DR, Forsyth M (2012) High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: the effect of Zn2+ salt and water concentration. Electrochem Commun 18:119–122CrossRefGoogle Scholar
  14. 14.
    Liu Z, Abedin SZE, Endres F (2013) Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures. Electrochim Acta 89:635–643CrossRefGoogle Scholar
  15. 15.
    Liu Z, Cui T, Pulletikurthi G, Lahiri A, Carstens T, Olschewski M, Endres F (2016) Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew Chem Int Edit 55:2889–2893CrossRefGoogle Scholar
  16. 16.
    Simons TJ, Salsamendi M, Howlett PC, Forsyth M, MacFarlane DR, Gonzalo CP (2015) Rechargeable Zn/PEDOT battery with an imidazolium-based ionic liquid as the electrolyte. Chemelectrochem 2:2071–2078CrossRefGoogle Scholar
  17. 17.
    Liu Z, Li G, Cui T, Borodin A, Kuhl C, Endres F (2018) A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite. J Solid State Electr 22:91–101CrossRefGoogle Scholar
  18. 18.
    Kundu D, Adams BD, Ort VD, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy 1:16119CrossRefGoogle Scholar
  19. 19.
    Zhao HB, Hu CJ, Cheng HW, Fang JH, Xie YP, Fang WY, Doan TNL, Hoang TKA, Xu JQ, Chen P (2016) Novel rechargeable M3V2(PO4)3//zinc (M = Li, Na) hybrid aqueous batteries with excellent cycling performance. Sci Rep 6:25809CrossRefGoogle Scholar
  20. 20.
    Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y (2016) Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25:211–217CrossRefGoogle Scholar
  21. 21.
    Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J (2016) Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 138:12894–12901CrossRefGoogle Scholar
  22. 22.
    He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L (2017) Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater 7:1601920CrossRefGoogle Scholar
  23. 23.
    Liu Z, Pulletikurthi G, Endres F (2016) A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. Acs Appl Mater Inter 8:12158–12164CrossRefGoogle Scholar
  24. 24.
    Zhang L, Chen L, Zhou X, Liu Z (2015) Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater 5:1400930CrossRefGoogle Scholar
  25. 25.
    Trocoli R, Mantia FL (2015) An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8:481–485CrossRefGoogle Scholar
  26. 26.
    Liu Z, Bertram P, Endres F (2017) Bio-degradable zinc-ion battery based on a Prussian blue analogue cathode and a bio-ionic liquid-based electrolyte. J Solid State Electr 21:2021–2027CrossRefGoogle Scholar
  27. 27.
    Carlin RT, Long HCD, Fuller J, Trulove PC (1994) Dual intercalating molten electrolyte batteries. J Electrochem Soc 141:L73–L76CrossRefGoogle Scholar
  28. 28.
    Panero S, Spila E, Scrosati B (1996) A new type of a rocking-chair battery family based on a graphite anode and a polymer cathode. J Electrochem Soc 143:L29–L30CrossRefGoogle Scholar
  29. 29.
    Placke T, Fromm O, Lux SF, Bieker P, Rothermel S, Meyer H, Passerini S, Winter M (2012) Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J Electrochem Soc 159:A1755–A1765CrossRefGoogle Scholar
  30. 30.
    Beltrop K, Meister P, Klein S, Heckmann A, Grünebaum M, Wiemhöfer HD, Winter M, Placke T (2016) Does size really matter? New insights into the intercalation behavior of anions into a graphite-based positive electrode for dual-ion batteries. Electrochim Acta 209:44–55CrossRefGoogle Scholar
  31. 31.
    Rodriguez-Perez IA, Ji X (2017) Anion hosting cathodes in dual-ion batteries. Acs Energy Lett 2:1762–1770CrossRefGoogle Scholar
  32. 32.
    Zhang X, Tang Y, Zhang F, Lee C (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6:1502588CrossRefGoogle Scholar
  33. 33.
    Meister P, Fromm O, Rothermel S, Kasnatscheew J, Winter M, Placke T (2017) Sodium-based vs. lithium-based dual-ion cells: electrochemical study of anion intercalation/de-intercalation into/from graphite and metal plating/dissolution behavior. Electrochim Acta 228:18–27CrossRefGoogle Scholar
  34. 34.
    Fan L, Liu Q, Xu Z, Lu B (2017) An organic cathode for potassium dual-ion full battery. Acs Energy Lett 2:1614–1620CrossRefGoogle Scholar
  35. 35.
    Lin M, Gong M, Lu B, Wu Y, Wang D, Guan M, Angell M, Chen C, Yang J, Hwang B, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:325CrossRefGoogle Scholar
  36. 36.
    Fan J, Zhang Z, Liu Y, Wang A, Li L, Yuan W (2017) An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. Chem Commun 53:6891–6894CrossRefGoogle Scholar
  37. 37.
    Fan L, Liu Q, Chen S, Lin K, Xu Z, Lu B (2017) Potassium-based dual ion battery with dual-graphite electrode. Small 13:1701011CrossRefGoogle Scholar
  38. 38.
    Fan L, Liu Q, Chen S, Xu Z, Lu B (2017) Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv Energy Mater 7:1602778CrossRefGoogle Scholar
  39. 39.
    Gupta T, Kim A, Phadke S, Biswas S, Luong T, Hertzberg BJ, Chamoun M, Evans-Lutterodt K, Steingart DA (2016) Improving the cycle life of a high-rate, high-potential aqueous dual ion battery using hyper-dendritic zinc and copper hexacyanoferrate. J Power Sources 305:22–29CrossRefGoogle Scholar
  40. 40.
    Trocoli R, Morata A, Fehse M, Stchakovsky M, Sepulveda A, Tarancon A (2017) High specific power dual-metal-ion rechargeable microbatteries based on LiMn2O4 and zinc for miniaturized applications. Acs Appl Mater Inter 9:32713–32719CrossRefGoogle Scholar
  41. 41.
    Anwar N, Riyazuddeen (2018) Excess molar volumes, excess molar isentropic compressibilities, viscosity deviations, and activation parameters for 1-ethyl-3-methylimidazolium trifluoro-methanesulfonate plus dimethyl sulfoxide and/or acetonitrile at T=298.15 to 323.15 K and P=0.1 MPa. J Chem Eng Data 63:269–289CrossRefGoogle Scholar
  42. 42.
    Jarosik A, Krajewski SR, Lewandowski A, Radzimski P (2006) Conductivity of ionic liquids in mixtures. J Mol Liq 123:43–50CrossRefGoogle Scholar
  43. 43.
    Liu Z, Abedin SZE, Endres F (2014) Electrodeposition and stripping of zinc from an ionic liquid polymer gel electrolyte for rechargeable zinc-based batteries. J Solid State Electr 18:2683–2691CrossRefGoogle Scholar
  44. 44.
    Gonzalez MA, Trocoli R, Pavlovic I, Barriga C, La Mantia F (2016) Layered double hydroxides as a suitable substrate to improve the efficiency of Zn anode in neutral pH Zn-ion batteries. Electrochem Commun 68:1–4CrossRefGoogle Scholar
  45. 45.
    Horn D, Boehm HP (1977) Graphite trifluoromethanesulfonate C26 +CF3SO3 .1.63CF3SO3H. Material Sci Engineering 31:87–89CrossRefGoogle Scholar
  46. 46.
    Karunanithy S, Aubke F (1982) Graphite trifluoromethylsulfate C12 +SO3CF3 . Carbon 20:237–241CrossRefGoogle Scholar
  47. 47.
    Schmuelling G, Placke T, Kloepsch R, Fromm O, Meyer H, Passerini S, Winter M (2013) X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells. J Power Sources 239:563–571CrossRefGoogle Scholar
  48. 48.
    Huesker J, Frobose L, Kwade A, Winter M, Placke T (2017) In situ dilatometric study of the binder influence on the electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anions into graphite. Electrochim Acta 257:423–435CrossRefGoogle Scholar
  49. 49.
    Chan CY, Lee P, Xu Z, Yu DYW (2018) Designing high-power graphite-based dual-ion batteries. Electrochim Acta 263:34–39CrossRefGoogle Scholar
  50. 50.
    Li Z, Liu J, Niu B, Li J, Kang F (2018) A novel graphite-graphite dual ion battery using an AlCl3 -[EMIm]cl liquid electrolyte. Small.  https://doi.org/10.1002/smll.201800745
  51. 51.
    Senguttuvan P, Han S, Kim S, Lipson AL, Tepavcevic S, Fister TT, Bloom ID, Burrell AK, Johnson CS (2016) A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv Energy Mater 6:1600826CrossRefGoogle Scholar
  52. 52.
    Mueller C, Vesztergom S, Pajkossy T, Jacob T (2015) The interface between Au(100) and 1-butyl-3-methyl-imidazolium-bis(trifluoromethylsulfonyl)imide. J Electroanal Chem 737:218–225CrossRefGoogle Scholar
  53. 53.
    Kislenko SA, Samoylov IS, Amirov RH (2009) Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF6]. Phys Chem Chem Phys 11:5584–5590CrossRefGoogle Scholar
  54. 54.
    Baldelli S (2008) Surface structure at the ionic liquid-electrified metal interface. Accounts Chem Res 41:421–431CrossRefGoogle Scholar
  55. 55.
    Su Y, Fu Y, Wei Y, Yan J, Mao B (2010) The electrode/ionic liquid interface: electric double layer and metal electrodeposition. Chemphyschem 11:2764–2778CrossRefGoogle Scholar
  56. 56.
    Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon J (1998) Comparative performance of x-ray diffraction and Raman microprobe techniques for the study of carbon materials. J Mater Chem 8:2875–2879CrossRefGoogle Scholar
  57. 57.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291CrossRefGoogle Scholar
  58. 58.
    Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRefGoogle Scholar
  59. 59.
    Alsmeyer DC, Mccreery RL (1992) In situ Raman monitoring of electrochemical graphite intercalation and lattice damage in mild aqueous acids. Anal Chem 64:1528–1533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiaxin Fan
    • 1
  • Qiangqiang Xiao
    • 1
  • Yaobing Fang
    • 1
  • Li Li
    • 2
  • Wenhui Yuan
    • 1
  1. 1.Guangdong Engineering Technology Research Center for Effective Storage and Utilization of Thermal Energy, School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Environmental and EnergySouth China University of TechnologyGuangzhouChina

Personalised recommendations