, Volume 25, Issue 3, pp 1223–1233 | Cite as

The effects of carbon coating on the electrochemical performance of Zn-Al layer double oxides in nickel-zinc secondary cells

  • Xiao Zeng
  • Zhanhong YangEmail author
  • Jun Long
  • Linlin Chen
  • Haigang Qin
  • Maokui Fan
Original Paper


Carbon-coated Zn-Al layer double oxide (Zn-Al-LDOs) is synthesized by hydrothermal-calcined method and investigated as an anode material for the Ni-Zn cells. The as-obtained products are characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray diffraction (XRD), which prove that carbon-coated Zn-Al-LDOs are well-crystallized and carbon formed on the surface of Zn-Al-LDOs is amorphous. The electrochemical performances of the carbon-coated Zn-Al-LDOs electrode with different carbon content and pure Zn-Al-LDOs electrode are investigated by the cyclic voltammograms (CV), AC electrochemical impedance spectroscopy (EIS), Tafel plot (TAFEL), and galvanostatic charge-discharge (GCD) measurements. Compared with the pure Zn-Al-LDOs electrode, the carbon-coated Zn-Al-LDOs electrode shows better reversibility, higher specific capacity, and more excellent cycling performance.


Carbon coating Zinc-aluminum layer double oxides Zinc electrode Nickel-zinc secondary cells Electrochemical performance 



This work was financially supported by the National Natural Science Foundation of China (no. 21371180), Doctoral Fund of Ministry of Education of China (20130162110018), and the Science and Technology Project of Changsha City (no. k1303015-11).

Supplementary material

11581_2018_2642_MOESM1_ESM.dtd (42 kb)
ESM 1 (DTD 42 kb)


  1. 1.
    Mclarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138:645–656CrossRefGoogle Scholar
  2. 2.
    Wang R, Yang Z, Yang B, Wang T, Chu Z (2014) Superior cycle stability and high rate capability of Zn–Al–In-hydrotalcite as negative electrode materials for Ni–Zn secondary batteries. J Power Sources 251:344–350CrossRefGoogle Scholar
  3. 3.
    Feng Z, Yang Z, Huang J, Xie X, Zhang Z (2014) Influences of Zn-Sn-Al-hydrotalcite additive on the electrochemical performances of ZnO for zinc-nickel secondary cells. J Electrochem Soc 161:A1981–A1986CrossRefGoogle Scholar
  4. 4.
    Huang J, Yang Z, Yang B, Wang R, Wang T (2014) Ultrasound assisted polymerization for synthesis of ZnO/Polypyrrole composites for zinc/nickel rechargeable battery. J Power Sources 271:143–151CrossRefGoogle Scholar
  5. 5.
    Xie X, Yang Z, Feng Z, Zhang Z, Huang J (2015) Electrochemical properties of ZnO added with Zn-Al-hydrotalcites as anode materials for zinc/nickel alkaline secondary batteries. Electrochim Acta 154:308–314CrossRefGoogle Scholar
  6. 6.
    Einerhand R, Visscher W, Degoeij J, Barendrecht E (1991) Zinc electrode shape change. II. Process and mechanism. J Electrochem Soc 138:7–17CrossRefGoogle Scholar
  7. 7.
    Jindra J (2000) Sealed Ni–Zn cells, 1996–1998. J Power Sources 88:202–205CrossRefGoogle Scholar
  8. 8.
    Arise I, Kawai S, Fukunaka Y, McLarnon F (2013) Coupling phenomena between zinc surface morphological variations and ionic mass transfer rate in alkaline solution. J Electrochem Soc 160:D66–D74CrossRefGoogle Scholar
  9. 9.
    Huang J, Yang Z, Wang R, Zhang Z, Feng Z, Xie X (2015) Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery. J Mater Chem A 3:7429–7436CrossRefGoogle Scholar
  10. 10.
    McLarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138:645–656CrossRefGoogle Scholar
  11. 11.
    Bass K, Mitchell P, Wilcox G, Smith J (1991) Methods for the reduction of shape change and dendritic growth in zinc-based secondary cells. J Power Sources 35:333–351CrossRefGoogle Scholar
  12. 12.
    Ma M, Tu J, Yuan Y, Wang X, Li K, Mao F, Zeng Z (2008) Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries. J Power Sources 179:395–400CrossRefGoogle Scholar
  13. 13.
    Long J, Yang Z, Huang J, Zeng X (2017) Self-assembly of exfoliated layered double hydroxide and grapheme nanosheets for electrochemical energy storage in zinc/nickel secondary batteries. J Power Sources 359:111–118CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Yang Z, Huang J, Feng Z, Xie X (2015) Enhancement of electrochemical performance with Zn-Al-Bi layered hydrotalcites as anode material for Zn/Ni secondary battery. Electrochim Acta 155:61–68CrossRefGoogle Scholar
  15. 15.
    Wen X, Yang Z, Xie X, Feng Z, Huang J (2015) The effects of element Cu on the electrochemical performances of zinc-aluminum-hydrotalcites in zinc/nickel secondary battery. Electrochim Acta 180:451–459CrossRefGoogle Scholar
  16. 16.
    Liu Y, Yang Z, Xie X, Huang J, Wen X (2015) Layered double oxides nano-flakes derived from layered double hydroxides: preparation, properties and application in zinc/nickel secondary batteries. Electrochim Acta 185:190–197CrossRefGoogle Scholar
  17. 17.
    Yan J, Yang Z (2016) Based on the performance of hydrotalcite as anode material for a Zn–Ni secondary cell, a modification: PPY coated Zn–Al–LDH was adopted. RSC Adv 6:85117–85124CrossRefGoogle Scholar
  18. 18.
    Long J, Yang Z, Zeng X, Huang J (2016) A new class of nanocomposites of Zn–Al–Bi layered double oxides: large reversible capacity and better cycle performance for alkaline secondary batteries. RSC Adv 6:92896–929046CrossRefGoogle Scholar
  19. 19.
    Liang J, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T (2010) Topochemical synthesis, anion exchange, and exfoliation of Co–Ni layered double hydroxides: a route to positively charged Co–Ni hydroxide nanosheets with tunable composition. Chem Mater 22:371–378CrossRefGoogle Scholar
  20. 20.
    Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880CrossRefGoogle Scholar
  21. 21.
    Wang C, Wu Y, Jacobs R, Warner J, Williams G, O’Hare D (2011) Reverse micelle synthesis of Co–Al LDHs: control of particle size and magnetic properties. Chem Mater 23:171–180CrossRefGoogle Scholar
  22. 22.
    Wang L, Liu Y, Chen X, Qin H, Yang Z (2017) Zinc aluminum antimony hydrotalcite as anode materials for Ni-Zn secondary batteries. J Electrochem Soc 164:A3692–A3698CrossRefGoogle Scholar
  23. 23.
    Fan X, Yang Z, Wen R, Yang B, Long W (2013) The application of Zn–Al-hydrotalcite as a novel anodic material for Ni–Zn secondary cells. J Power Sources 224:80–85CrossRefGoogle Scholar
  24. 24.
    Yang B, Yang Z, Wang R, Wang T (2013) Layered double hydroxide/carbon nanotubes composite as a high performance anode material for Ni–Zn secondary batteries. Electrochim Acta 111:581–587CrossRefGoogle Scholar
  25. 25.
    Yang B, Yang Z, Wang R (2014) Facile synthesis of novel two-dimensional silver-coated layered double hydroxide nanosheets as advanced anode material for Ni–Zn secondary batteries. J Power Sources 251:14–19CrossRefGoogle Scholar
  26. 26.
    Yang B, Yang Z, Wang R, Feng Z (2014) Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries. J Mater Chem A 2:785–791CrossRefGoogle Scholar
  27. 27.
    Liu Y, Yang Z (2016) Intercalation of sulfate anions into a Zn–Al layered double hydroxide: their synthesis and application in Zn–Ni secondary batteries. RSC Adv 6:68584–68591CrossRefGoogle Scholar
  28. 28.
    Bontchev R, Liu S, Krumhansl J, Voigt J, Nenoff T (2003) Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2(OH)16(A)x(A’)2-x·4H2O (A, A’ = Cl, Br, I, and NO3 , 2≥X≥0) derivatives. Chem Mater 15:3669–3675CrossRefGoogle Scholar
  29. 29.
    Renuka R, Srinivasan L, Ramamurthy S, Veluchamy A, Venkatakrishnan N (2001) Cyclic voltammetric study of zinc and zinc oxide electrodes in 5.3 M KOH. J Appl Electrochem 31:655–661CrossRefGoogle Scholar
  30. 30.
    Fan X, Yang Z, Long W, Zhao Z, Yang B (2013) The preparation and electrochemical performance of In(OH)3-coated Zn-Al-hydrotalcite as anode material for Zn–Ni secondary cell. Electrochim Acta 92:365–370CrossRefGoogle Scholar
  31. 31.
    McBreen J, Gannon E (1985) Bismuth oxide as an additive in pasted zinc electrodes. J Power Sources 15:169–177CrossRefGoogle Scholar
  32. 32.
    Coates D, Ferreira E, Charkey A (1997) An improved nickel/zinc battery for ventricular assist systems. J Power Sources 65:109–115CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Yang Z, Wang R, Feng Z, Xie X, Liao Q (2014) Electrochemical performance of ZnO/SnO2 composites as anode materials for Zn/Ni secondary batteries. ElectrochimActa 13:4287–4292Google Scholar
  34. 34.
    Shivkumar R, Kalaignan G, Vasudevan T (1998) Studies with porous zinc electrodes with additives for secondary alkaline batteries. J Power Sources 75:90–100CrossRefGoogle Scholar
  35. 35.
    Long W, Yang Z, Fan X, Yang B, Zhao Z, Jing J (2013) The effects of carbon coating on the electrochemical performances of ZnO in Ni–Zn secondary batteries. Electrochim Acta 105:40–46CrossRefGoogle Scholar
  36. 36.
    Zhao X, Zhang F, Xu S, Evans DG, Duan X (2010) From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product. Chem Mater 22:3933–3942CrossRefGoogle Scholar
  37. 37.
    Zeng X, Yang Z, Liu F, Long J, Feng Z, Fan M (2017) An in situ recovery method to prepare carbon-coated Zn–Al–hydrotalcite as the anode material for nickel–zinc secondary batteries. RSC Adv 74:4514–44522Google Scholar
  38. 38.
    Inada M, Enomoto N, Hojo J, Hayashi K (2017) Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization. Adv Powder Technol 28:884–889CrossRefGoogle Scholar
  39. 39.
    Sevilla M, Fuertes A (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289CrossRefGoogle Scholar
  40. 40.
    Sevilla M, Fuertes A (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem 15:4195–4203CrossRefGoogle Scholar
  41. 41.
    Long J, Yang Z, Zhang Z, Huang J (2017) Sheet-like carbon-coated Zn-Al-bi layered double oxides nanocomposites enabling high performance for rechargeable alkaline batteries. J Electrochem Soc 164:A3068–A3074CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao Zeng
    • 1
    • 2
  • Zhanhong Yang
    • 1
    Email author
  • Jun Long
    • 1
  • Linlin Chen
    • 1
  • Haigang Qin
    • 1
  • Maokui Fan
    • 2
  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.Public Security Fire Forces CollegeKunmingChina

Personalised recommendations