Advertisement

Ionics

pp 1–9 | Cite as

Fluoroethylene carbonate as an electrolyte additive for improving interfacial stability of high-voltage LiNi0.6Co0.2Mn0.2O2 cathode

  • Lili Liu
  • Shili Wang
  • Ziyan Zhang
  • Juntian Fan
  • Wen Qi
  • Shimou Chen
Original Paper
  • 76 Downloads

Abstract

In this work, fluoroethylene carbonate (FEC) is used as an additive to improve the interface stability between LiNi0.6Co0.2Mn0.2O2 (NCM622) electrode and electrolyte under high voltage (4.6 V vs Li/Li+). The improved cycle stability and electrochemical impedance spectroscopy (EIS) studies imply the formation of robust, uniform and less-resistive film on the surface of NCM622. The results from TEM, SEM and XPS demonstrate that FEC facilitates the formation of CEI layer, and the FEC-derived CEI protects against not only the decomposition of the electrolyte solvent but also oxidation of the NCM622 electrode.

Keywords

Lithium-ion batteries Electrolyte additives High voltage Fluoroethylene carbonate 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (No. 21503006 and 91534109), National Key Projects for Fundamental Research and Development of China (No. 2017YFB0102200), Beijing Municipal Science and Technology Project (D171100005617001), Beijing Natural Science Foundation (No. 2184134), and Henan province science and technology cooperation project (172106000061).

References

  1. 1.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417CrossRefGoogle Scholar
  2. 2.
    Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better ... A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939CrossRefGoogle Scholar
  3. 3.
    Lee YM, Lee YG, Kang YM, Cho KY (2010) Nature of tris (pentafluorophenyl) borane as a functional additive and its contribution to high rate performance in lithium-ion secondary battery. Electrochem. Solid-State Lett 13:A55–A58CrossRefGoogle Scholar
  4. 4.
    Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106CrossRefGoogle Scholar
  5. 5.
    Carr JM, Mackey M, Flandin L, Schuele D, Zhu L, Baer E (2013) Effect of biaxial orientation on dielectric and breakdown properties of poly(ethyleneterephthalate)/poly(vinylidenefluoride-co-tetrafluoroethylene) multilayer films. J Polym Sci B Polym Phys 51:882–896CrossRefGoogle Scholar
  6. 6.
    Huang Y, Zhu MS, Huang Y, Pei ZX, Li HF, Wang ZF, Xue Q (2016) Multifunctional energy storage and conversion devices. Adv Mater 28:8344–8364CrossRefGoogle Scholar
  7. 7.
    Xue Q, Sun JF, Huang Y, Zhu MS, Pei ZX, Li HF, Wang YK, Li N, Zhang HY, Zhi CY (2017) Recent progress on flexible and wearable supercapacitors. Small 13.  https://doi.org/10.1002/smll.201701827
  8. 8.
    Mcgrogan FP, Chiang YM, Van Vliet KJ, Krystyn V (2017) Effect of transition metal substitution on elastoplastic properties of LiMn2O4, spinel. J Electroceram 38:215–221CrossRefGoogle Scholar
  9. 9.
    Lebens-Higgins ZW, Sallis S, Faenza NV, Badway F, Pereira N, Halat DM, Wahila M, Schlueter C, Lee TL, Yang WL (2017) Evolution of the electrode-electrolyte interface of LiNi0.8Co0.15Al0.05O2 electrodes due to electrochemical and thermal stress. Chem Mater 30:958–969CrossRefGoogle Scholar
  10. 10.
    Cao ZX, Li YL, Shi MJ, Zhu GS, Zhang RR, Li XG, Yue HY, Yang ST (2017) Improvement of the cycling performance and thermal stability of lithium-ion batteries by coating cathode materials with Al2O3 Nano layer. J Electrochem Soc 164:A475–A481CrossRefGoogle Scholar
  11. 11.
    Lee MJ, Lho E, Oh P, Son Y, Cho J (2017) Simultaneous surface modification method for 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries: acid treatment and LiCoPO4 coating. Nano Res 10:4210–4220CrossRefGoogle Scholar
  12. 12.
    Liu J, Manthiram A (2009) Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J Phys Chem C 113:15073–15079CrossRefGoogle Scholar
  13. 13.
    Manthiram A, Chemelewski K, Lee ES (2013) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350CrossRefGoogle Scholar
  14. 14.
    Beltrop K, Klein S, Nolle R, Wilken A, Lee JJ, Koster TKJ, Reiter J, Tao L, Liang CD, Winter M, Qi X, Placke T (2018) Triphenylphosphine oxide as highly effective electrolyte additive for graphite/NMC811 lithium ion cells. Chem Mater 30:2726–2741CrossRefGoogle Scholar
  15. 15.
    Li F, Wang YY, Gao SL, Hou PY, Zhang LQ (2017) Mitigating the capacity and voltage decay of lithium-rich layered oxide cathodes by fabricating Ni/Mn graded surface. J Mater Chem A 5:24758–24766CrossRefGoogle Scholar
  16. 16.
    Tu WQ, Ye CC, Yang XR, Xing LD, Liao YH, Liu X, Li WS (2017) Trimethylsilylcyclopentadiene as a novel electrolyte additive for high temperature application of lithium nickel manganese oxide cathode. J Power Sources 364:23–32CrossRefGoogle Scholar
  17. 17.
    Wu ZZ, Ji SP, Zheng JX, Hu ZX, Xiao S, Wei Y, Zhuo ZQ, Lin Y, Yang WL, Xu K, Amine K, Pan F (2015) Prelithiation activates Li(Ni0.5Mn0.3Co0.2)O2 for high capacity and excellent cycling stability. Nano Lett 15:5590–5596CrossRefGoogle Scholar
  18. 18.
    Leng YJ, Ge SH, Marple D, Yang XG, Bauer C, Lamp P, Wang CY (2017) Electrochemical cycle-life characterization of high energy lithium-ion cells with thick Li(Ni0.6Mn0.2Co0.2)O2 and graphite electrodes. J Electrochem Soc 164:A1037–A1049CrossRefGoogle Scholar
  19. 19.
    Park J, Choi I, Lee MJ, Kim MH, Lim T, Park KH, Jang J, Oh SM, Cho SK, Kim JJ (2014) Effect of fluoroethylene carbonate on electrochemical battery performance and the surface chemistry of amorphous MoO2, lithium-ion secondary battery negative electrodes. Electrochim Acta 132:338–346CrossRefGoogle Scholar
  20. 20.
    Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158:A798–A801CrossRefGoogle Scholar
  21. 21.
    Xu Y, Liu JL, Zhou L, Zeng LC, Yang ZG (2017) FEC as the additive of 5 V electrolyte and its electrochemical performance for LiNi0.5Mn15O4. J Electroanal Chem 791:109–116CrossRefGoogle Scholar
  22. 22.
    Lin Y, Li JH, Xing LD, Liao YH, Xu MQ, Liu X, Li WS (2018) Optimal concentration of electrolyte additive for cyclic stability improvement of high-voltage cathode of lithium-ion battery. Ionics 24:661–670CrossRefGoogle Scholar
  23. 23.
    Li SY, Zhao DN, Wang P, Cui XL, Tang FJ (2016) Electrochemical effect and mechanism of adiponitrile additive for high-voltage electrolyte. Electrochim Acta 222:668–677CrossRefGoogle Scholar
  24. 24.
    Shin H, Park J, Sastry AM, Lu W (2015) Effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures. J Electrochem Soc 162:A1683–A1692CrossRefGoogle Scholar
  25. 25.
    Zuo XX, Wu JH, Zhao MK, Wang CY, Liu JS, Nan JM (2016) Vinyl ethylene carbonate as an electrolyte additive for high-voltage LiNi0.4Mn0.4Co0.2O2 /graphite Li-ion batteries. Ionics 22:201–208CrossRefGoogle Scholar
  26. 26.
    Kobayashi H, Takenaka Y, Arachi Y, Nitani H, Okumura T, Shikano M, Kageyama H, Tatsumi K (2012) Study on Li de-intercalation/intercalation mechanism for a high capacity layered Li1.20Ni0.17Co0.10Mn0.53O2, material. Solid State Ionics 225:580–584CrossRefGoogle Scholar
  27. 27.
    Sano A, Kurihara M, Ogawa K, Iijima T, Maruyama S (2009) Decreasing the initial irreversible capacity loss of graphite negative electrode by alkali addition. J Power Sources 192:703–707CrossRefGoogle Scholar
  28. 28.
    Li Y, Lian F, Ma LL, Liu CL, Yang L, Sun XM, Chou KC (2015) Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li1.16[Mn0.75Ni0.25]0.84O2, material. Electrochim Acta 168:261–270CrossRefGoogle Scholar
  29. 29.
    Deng B, Wang H, Ge WJ, Li X, Yan XX, Chen T, Qu MZ, Peng GC (2017) Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2, cathode using an innovative electrolyte additive. Electrochim Acta 236:61–71CrossRefGoogle Scholar
  30. 30.
    Prosini PP, Banow B (2003) Composite polyether electrolytes with a poly (styrenesulfonate) lithium salt and Lewis acid type additive. Electrochim Acta 48:1899–1903CrossRefGoogle Scholar
  31. 31.
    Yu QP, Chen ZT, Xing LD, Chen DR, Rong HB, Liu Q, Li WS (2015) Enhanced high voltage performances of layered lithium nickel cobalt manganese oxide cathode by using trimethylboroxine as electrolyte additive. Electrochim Acta 176:919–925CrossRefGoogle Scholar
  32. 32.
    Zhu CJ, Chen J, Liu SS, Cheng BM, Xu Y, Zhang PW, Zhang Q, Li YT, Zhong SW (2018) Improved electrochemical performance of bagasse and starch-modified LiNi 0.5Mn 0.3Co0.2O2, materials for lithium-ion batteries. J Mater Sci 53:5242–5254CrossRefGoogle Scholar
  33. 33.
    Wang L, Ma YL, Qu YT, Cheng XQ, Zuo PJ, Du CY, Gao YZ (2016) Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2, cathode for lithium-ion batteries. Electrochim Acta 191:8–15CrossRefGoogle Scholar
  34. 34.
    Zuo XX, Wu JH, Fan CJ, Lai K, Liu JS, Nan JM (2014) Improvement of the thermal stability of LiMn2O4 /graphite cells with methylene methanedisulfonate as electrolyte additive. Electrochim Acta 130:778–784CrossRefGoogle Scholar
  35. 35.
    Wang ZS, Xing LD, Li JH, Li B, Xu MQ, Liao YH, Li WS (2015) Trimethyl borate as an electrolyte additive for high potential layered cathode with concurrent improvement of rate capability and cyclic stability. Electrochim Acta 184:40–46CrossRefGoogle Scholar
  36. 36.
    Shiraishi S, Kanamura K, Takehara Z (1997) Study of the surface composition of highly smooth lithium deposited in various carbonate electrolytes containing HF. Langmuir 13:3542–3549CrossRefGoogle Scholar
  37. 37.
    Kim K, Park I, Ha SY, Kim Y, Woo MH, Jeong M, Shin WC, Ue M, Hong SY, Choi NS (2017) Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries. Electrochim Acta 225:358–368CrossRefGoogle Scholar
  38. 38.
    Lu DS, Xu MQ, Zhou L, Garsuch A, Lucht BL (2013) Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J Electrochem Soc 160:A3138–A3143CrossRefGoogle Scholar
  39. 39.
    Xu MQ, Xiao A, Li WS, Lucht BL (2010) Investigation of lithium tetrafluorooxalatophosphate [LiPF4 (C2O4)] as a lithium-ion battery electrolyte for elevated temperature performance. J Electrochem Soc 157:A115–AA12CrossRefGoogle Scholar
  40. 40.
    Horowitz Y, Steinruck HG, Han HL, Cao CT, Abate II, Tsao YC, Toney MF, Somorjai GA (2018) Fluoroethylene carbonate induces ordered electrolyte interface on silicon and sapphire surfaces as revealed by sum frequency generation vibrational spectroscopy and X-ray reflectivity. Nano Lett 18:2105–2111CrossRefGoogle Scholar
  41. 41.
    Fridman K, Sharabi R, Elazari R, Gershinsky G, Markevich E, Salitra G, Markevich E, Salitra G, Aurbach D, Garsuch A, Lampert J (2013) A new advanced lithium ion battery: combination of high performance amorphous columnar silicon thin film anode, 5V LiNi0.5Mn1.5O4, spinel cathode and fluoroethylene carbonate-based electrolyte solution. Electrochem Commun 33:31–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lili Liu
    • 1
  • Shili Wang
    • 1
  • Ziyan Zhang
    • 1
  • Juntian Fan
    • 2
  • Wen Qi
    • 3
  • Shimou Chen
    • 2
  1. 1.School of Sciences/ Key Laboratory of Cosmetic,China National Light IndustryBeijing Technology and Business UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Materials CenterBeijing Institute of Collaborative InnovationBeijingChina

Personalised recommendations