Advertisement

Ionics

, Volume 25, Issue 2, pp 773–784 | Cite as

Visible light photocatalytic activity of tungsten and fluorine codoped TiO2 nanoparticle for an efficient dye degradation

  • Boobas SingaramEmail author
  • Jayaprakash Jeyaram
  • Ranjith Rajendran
  • Priyadharsan Arumugam
  • Krishnakumar Varadharajan
Original Paper

Abstract

Tungsten and fluorine codoped TiO2 (W, F-TiO2) nanoparticles were synthesis by sol-gel method. The XRD analysis shows that all the samples existed as anatase phase of TiO2. Also, the crystalline size of codoped TiO2 is decreasing than the pure and monodoped TiO2. TEM images indicate that grain size of pure and codoped TiO2 nanoparticles are in the range of 15–22 and 6–14 nm, respectively. Band gap of codoped TiO2 nanoparticles showed narrowing (2.85 eV) when compared to monodoped TiO2 (3.02 and 2.97 eV) and pure (3.16 eV) nanoparticles. The observed lower intensity from PL study in the codoped TiO2 sample than that in other TiO2 samples indicated that the recombination of photoinduced electrons and holes in TiO2 could be effectively inhibited in the W and F ions. The codoped TiO2 exhibited the highest photocatalytic activity under visible light compared with other TiO2. The codoped TiO2, great visible light absorption is produced by the formation of impurity energy states near both the band edges which also act as both the photogenerated charges to diminish the recombination process.

Keywords

Codoped TiO2 Fluorine Photocatalyst Methylene blue Visible light 

References

  1. 1.
    Malato S, Ibanez PF, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal Today 147:1–59CrossRefGoogle Scholar
  2. 2.
    Roy P, Berger S, Schmuki P, Angew P (2011) Chem Int Ed 50:2904–2939CrossRefGoogle Scholar
  3. 3.
    Chen J, Poon CS (2009) Photocatalytic construction and building materials: From fundamentals to applications. Build Sci 44:1899–1906Google Scholar
  4. 4.
    Xu S, Zhu Y, Jiang L, Dan Y (2010) Visible Light Induced Photocatalytic Degradation of Methyl Orange by Polythiophene/TiO2 Composite Particles. Water Air Soil Pollut 213:151–159CrossRefGoogle Scholar
  5. 5.
    Khelifi E, Gannoun H, Touhami Y, Bouallagui H, Hamdi M (2008) Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. J Hazard Mater 152:683–689CrossRefGoogle Scholar
  6. 6.
    Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y, Chin Y (2015) Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. J Catal 36:2049–2070Google Scholar
  7. 7.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  8. 8.
    Tian H, Ma J, Li K, Li J (2009) Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceram Int 35:1289–1292CrossRefGoogle Scholar
  9. 9.
    Dozzi MV, Selli E, Photochem J (2013) Photobiol. C 14:13–28Google Scholar
  10. 10.
    Wang P, Yap PS, Lim TT (2011) C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl Catal, A 399:252–261CrossRefGoogle Scholar
  11. 11.
    Gai L, Duan X, Jiang H, Mei Q, Zhou G, Tian Y, Liu H (2012) One-pot synthesis of nitrogen-doped TiO2 nanorods with anatase/brookite structures and enhanced photocatalytic activity. Cryst Eng Comm 14:7662–7671CrossRefGoogle Scholar
  12. 12.
    Chen X, Liu L, Y P (2011) Yu and S. S. Mao. Science 331:746–750CrossRefGoogle Scholar
  13. 13.
    Wu JCS, Chen CH (2004) J Photochem Photobiol A 163(509–515)Google Scholar
  14. 14.
    Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic Materials: Possibilities and Challenges. Adv Mater 24:229–251CrossRefGoogle Scholar
  15. 15.
    Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874CrossRefGoogle Scholar
  16. 16.
    Primo A, Corma A, Garcia H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910CrossRefGoogle Scholar
  17. 17.
    Kisch H, Macyk W (2002) Visible-light photocatalysis by modified titania. Chem Phys Chem 3:399–400CrossRefGoogle Scholar
  18. 18.
    Ao YH, Xu JJ, Fu DG, Yuan CW (2009) A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. J Hazard Mater 167:413–417CrossRefGoogle Scholar
  19. 19.
    Lee K, Lee NH, Shin SH, Lee HG, Kim SJ (2006) Mater. Sci. Eng. B 29:109–115Google Scholar
  20. 20.
    Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2018) Toward sustainable energy: photocatalysis of Cr-doped TiO2: 2. effect of defect disorder. Ionics 24(2):327–341CrossRefGoogle Scholar
  21. 21.
    Manjunath K, Yadav LR, Nagaraju G, Dupont J, Ramakrishnappa T (2017) Progressive addition of GO to TiO2 nanowires for remarkable changes in photochemical hydrogen production. Ionics 23:2887–2894CrossRefGoogle Scholar
  22. 22.
    Samsudin EM, Hamid SBA (2017) Effect of band gap engineering in anionic-doped TiO 2 photocatalyst. Appl Surf Sci 391:326–336CrossRefGoogle Scholar
  23. 23.
    Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Centi G (2016) Synergetic effects in novel hydrogenated F-doped TiO 2 photocatalysts. Appl Surf Sci 370:380–393CrossRefGoogle Scholar
  24. 24.
    Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Kandjani AE, Bhargava SK (2016) Effective role of trifluoroacetic acid (TFA) to enhance the photocatalytic activity of F-doped TiO 2 prepared by modified sol–gel method. Appl Surf Sci 365:57–68CrossRefGoogle Scholar
  25. 25.
    Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO 2 reduction performance of TiO 2 : a review. Appl Surf Sci 392:658–686CrossRefGoogle Scholar
  26. 26.
    Kumar SG, Rao KK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO 2 , WO 3 and ZnO). Appl Surf Sci 391:124–148CrossRefGoogle Scholar
  27. 27.
    Qi K, Cheng B, Yu J, Ho W (2017) A review on TiO 2 -based Z-scheme photocatalysts. Chin J Catal 38(12):1936–1955CrossRefGoogle Scholar
  28. 28.
    Kim TH, González VR, Gyawali G, Cho SH, Sekino T, Lee SW (2013) Synthesis of solar light responsive Fe, N co-doped TiO2 photocatalyst by sonochemical method. Catal Today 212:75–80CrossRefGoogle Scholar
  29. 29.
    In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2Photocatalysts. J Am Chem Soc 129:13790–13791CrossRefGoogle Scholar
  30. 30.
    Wei H, Wu Y, Lun N, Zhao F (2004) Preparation and photocatalysis of TiO2nanoparticles co-doped with nitrogen and lanthanum. J Mater Sci 39:1305–1308CrossRefGoogle Scholar
  31. 31.
    Huang DG, Liao SJ, Liu JM, Dang Z, Petrik L (2006) Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. J Photoch Photobio A 184:282–288CrossRefGoogle Scholar
  32. 32.
    Zheng J, Xiong FQ, Zou M, Thomas T, Jiang H, Tian Y, Yang M (2016) Enhanced photocatalytic degradation of rhodamine B under visible light irradiation on mesoporous anatase TiO2 microspheres by codoping with W and N. Solid State Sci 54:49–53CrossRefGoogle Scholar
  33. 33.
    Huo R, Yang JY, Liu YQ, Liu HF, Li X, Xu YH (2016) Preparation of W and N, S-codoped titanium dioxide with enhanced photocatalytic activity under visible light irradiation. Mater Res Bull 76:72–78CrossRefGoogle Scholar
  34. 34.
    Li J, Xu J, Dai WL, Li H, Fan K (2008) One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol. Appl Catal B Environ 82:233–243CrossRefGoogle Scholar
  35. 35.
    Patterson AL (1939) The Scherrer Formula for X-Ray Particle Size Determination. Phys Rev 56:978–982CrossRefGoogle Scholar
  36. 36.
    Myung JH, Neagu D, Miller DN, Irvine JTS (2016) Switching on electrocatalytic activity in solid oxide cells. Nature 537:528–531CrossRefGoogle Scholar
  37. 37.
    S. George, S. Pokhrel, Z. Ji, B. L. Henderson, T. Xia, L. Li, J. I. Zink, A.E. Nel, A.E,L. Mädler, J Am Chem Soc, 133, 11270–11278 (2011), Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigmGoogle Scholar
  38. 38.
    Shwetharani R, Fernando CAN, Balakrishna GR (2015) Excellent hydrogen evolution by a multi approach via structure–property tailoring of titania. RSC Adv 5:39122–39130CrossRefGoogle Scholar
  39. 39.
    Wu Y, Xing M, Tian B, Zhang J, Chen F (2010) Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chem Eng J 162:710–717CrossRefGoogle Scholar
  40. 40.
    Rajendran R, Varadharajan K, Jayaraman V, Singram B, Jeyaram J (2018) Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted Bi2WO6–CdS nanocomposite film under visible light irradiation. Appl Nanosci 8:61–78CrossRefGoogle Scholar
  41. 41.
    Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2Powders. Chem Mater 14:3808–3816CrossRefGoogle Scholar
  42. 42.
    Zhang LS, Lin WF, Xia MQ, Leng LH, Chen GX, Zou JP, Zhong L, Wei XY, Lu MM, Li MX, Tu XM, Luo SL (2014) A New Approach for the Synthesis of Heterostructured TiO2/ZnS0.77Se0.23Composites with Enhanced Photocatalytic Activity: A Combination of Solid-State and Sol–Gel Methods. Sci Adv Mater 6:853–861CrossRefGoogle Scholar
  43. 43.
    Sharma R, Kar KK, Mater J (2015) Chem A 3:11948–11959Google Scholar
  44. 44.
    Ignateva LN, Polishchuk SA, Antokhina TF, Buznik VM (2004) IR Spectroscopic Study of the Structure of Glasses Based on Titanium Oxyfluoride. Glas Phys Chem 30:139–141CrossRefGoogle Scholar
  45. 45.
    Hung WC, Fu SH, Tseng JJ, Chu H, Ko TH (2007) Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method. Chemosphere 66:2142–2151CrossRefGoogle Scholar
  46. 46.
    Castro AL, Nunes MR, Carvalho MD, Ferreira LP, Jumas JC, Costa FM, Florencio MH (2009) Doped titanium dioxide nanocrystalline powders with high photocatalytic activity. J Solid State Chem 182:1838–1845CrossRefGoogle Scholar
  47. 47.
    Hamadanian M, Amani M, Jabbari V (2014) Improving thermal and optical properties of biodegradable poly(ethyl vinyl ether-co-maleic anhydride) (PEVE/MA) copolymer by encapsulation of TiO2 nanoparticles via in situ radical polymerization. Polym-Plast Technol Eng 53:1283–1289CrossRefGoogle Scholar
  48. 48.
    Mohapatra SK, Misra M, Mahajan VK, Raja KS, Phys J (2007) Chem C 111:8677–8685Google Scholar
  49. 49.
    Ma Y, Zhang J, Tian B, Chen F, Wang L (2010) Synthesis and characterization of thermally stable Sm,N co-doped TiO2 with highly visible light activity. J Hazard Mater 182:386–393CrossRefGoogle Scholar
  50. 50.
    Zhang J, Xiab J, Ji Z (2012) Mo + N Codoped TiO2 sheets with dominant {001} facets for enhancing visible-light photocatalytic activity. J Mater Chem 22:17700–17708CrossRefGoogle Scholar
  51. 51.
    Jiang J, Zhao K, Xiao X, Zhang L (2012) Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. J Am Chem Soc 134:4473–4476CrossRefGoogle Scholar
  52. 52.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental Applications of Semiconductor Photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  53. 53.
    Tang H, Chang S, Wu K, Tang G, Fu Y, Liu Q, Yang X (2016) Band gap and morphology engineering of TiO2 by silica and fluorine co-doping for efficient ultraviolet and visible photocatalysis. RSC Adv 6:63117–63130CrossRefGoogle Scholar
  54. 54.
    Xu J, Chen M, Fu D (2011) Study on highly visible light active Bi-doped TiO2 composite hollow sphere. Appl Surf Sci 257:7381–7386CrossRefGoogle Scholar
  55. 55.
    Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Centi G (2016) Synergetic effects in novel hydrogenated F-doped TiO 2 photocatalysts. Appl Surf Sci 370:380–393 (2016)CrossRefGoogle Scholar
  56. 56.
    Couselo N, García Einschlag FS, Candal RJ, Jobbágy M (2008) Tungsten-doped TiO2 vs pure TiO2 photocatalysts: effects on photobleaching kinetics and mechanism. J Phys Chem C 112:1094–1100CrossRefGoogle Scholar
  57. 57.
    Xue C, Xu X, Yang G, Ding S (2015) Comprehensive investigation of the reciprocity of structure and enhanced photocatalytic performance in finned-tube structured TiO2/BiOBr heterojunctions. RSC Adv 5:102228–102237CrossRefGoogle Scholar
  58. 58.
    Lin B, Xue C, Yan X, Yang G, Yang G, Yang B (2015) Facile fabrication of novel SiO 2 /g-C 3 N 4 core–shell nanosphere photocatalysts with enhanced visible light activity. Appl Surf Sci 357:346–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Boobas Singaram
    • 1
    • 2
    Email author
  • Jayaprakash Jeyaram
    • 1
  • Ranjith Rajendran
    • 1
  • Priyadharsan Arumugam
    • 1
  • Krishnakumar Varadharajan
    • 1
  1. 1.Department of PhysicsPeriyar UniversitySalemIndia
  2. 2.Department of PhysicsPeriyar University Constituent College of Arts and ScienceDharmapuriIndia

Personalised recommendations