, Volume 25, Issue 2, pp 827–834 | Cite as

Facile synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 with enlarged exposed active planes for Li-ion batteries

  • Hang Dong
  • Shaomin Li
  • Hao Liu
  • Jun Mei
  • Heng LiuEmail author
  • Guobiao LiuEmail author
Original Paper


Because enlarged exposed active planes facilitate the improvement of the rate capability of layered cathode material by providing more points for Li+ intercalation/de-intercalation, LiNi0.8Co0.15Al0.05O2 layered cathode material with enlarged exposed {010} active planes is desirable. In this article, micro-sized LiNi0.8Co0.15Al0.05O2 particles possessing enlarged exposed {010} active planes have been synthesized using Ni0.842Co0.158(OH)2 precursor prepared by an improved co-precipitation method. As-prepared LiNi0.8Co0.15Al0.05O2 demonstrates a good rate capability. The reversible capacity is 103 mAh g−1 at 10 °C, which is explained by the enhanced Li+ diffusion coefficient detected by CV and GITT measurements and reduced charge transfer resistance calculated by EIS tests. Moreover, the as-prepared LiNi0.8Co0.15Al0.05O2 also displays a good cycling stability. The capacity retention after 100 cycles at 0.2 °C is 85%. This good cycling stability can be ascribed to the porous structure of LiNi0.8Co0.15Al0.05O2 which provides a buffer area for volume expansion of the primary particles during cycling.


Lithium-ion battery LiNi0.8Co0.15Al0.05O2 Co-precipitation Exposed {010} planes Rate capability 


Funding information

The research was financially supported by the Sichuan Provincial Key Technology R&D Program (2016GZ0299).

Supplementary material

11581_2018_2620_MOESM1_ESM.doc (34 mb)
ESM 1 (DOC 34789 kb)


  1. 1.
    Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem 54:4440–4457CrossRefGoogle Scholar
  2. 2.
    Hou P, Yin J, Ding M, Huang J, Xu X (2017) Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives. Small 4:1701802CrossRefGoogle Scholar
  3. 3.
    Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation method on the electrochemical performance of cathode material li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta 56:3071–3078CrossRefGoogle Scholar
  4. 4.
    Yoon CS, Choi MH, Lim BB, Lee EJ, Sun YK (2015) Review—high-capacity Li[Ni1-xCox/2Mnx/2]O2 (x= 0.1, 0.05, 0) cathodes for next-generation li-ion battery. J Electrochem Soc 162:A2483–A2489CrossRefGoogle Scholar
  5. 5.
    Robert R, Villevieille C, Novák P (2014) Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. J Mater Chem A 2:8589CrossRefGoogle Scholar
  6. 6.
    Kim TH, Park JS, Chang SK, Choi S, Ryu JH, Song HK (2012) The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2:860–872CrossRefGoogle Scholar
  7. 7.
    Duan J, Wu C, Cao Y, Huang D, Du K, Peng Z, Hu G (2017) Enhanced compacting density and cycling performance of Ni-riched electrode via building mono dispersed micron scaled morphology. J Alloys Compd 695:91–99CrossRefGoogle Scholar
  8. 8.
    Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642–643CrossRefGoogle Scholar
  9. 9.
    Manthiram A, Song B, Li W (2017) A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater 6:125–139CrossRefGoogle Scholar
  10. 10.
    Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2016) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2:196–223CrossRefGoogle Scholar
  11. 11.
    Hua W, Wu Z, Chen M, Knapp M, Guo X, Indris S, Binder JR, Bramnik NN, Zhong B, Guo H, Chou S, Kang YM, Ehrenberg H (2017) Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. J Mater Chem A 5:25391–25400CrossRefGoogle Scholar
  12. 12.
    Sheng T, Xu YF, Jiang YX, Huang L, Tian N, Zhou ZY, Broadwell I, Sun SG (2016) Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Acc Chem Res 49:2569–2577CrossRefGoogle Scholar
  13. 13.
    Wang KX, Li XH, Chen JS (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27:527–545CrossRefGoogle Scholar
  14. 14.
    Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167–4185CrossRefGoogle Scholar
  15. 15.
    Xie H, Du K, Hu G, Peng Z, Cao Y (2016) The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors. J Phys Chem C 120:3235–3241CrossRefGoogle Scholar
  16. 16.
    Chen M, Zhao E, Chen D, Wu M, Han S, Huang Q, Yang L, Xiao X, Hu Z (2017) Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping. Inorg Chem 56:8355–8362CrossRefGoogle Scholar
  17. 17.
    Ju SH, Kang IS, Lee YS, Shin WK, Kim S, Shin K, Kim DW (2014) Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating. ACS Appl Mater Interfaces 6:2546–2552CrossRefGoogle Scholar
  18. 18.
    Ryu KS, Lee SH, Koo BK, Lee JW, Kim KM, Park YJ (2008) Effects of Co3(PO4)2 coatings on LiNi0.8Co0.16Al0.04O2 cathodes during application of high current. J Appl Electrochem 38:1385–1390CrossRefGoogle Scholar
  19. 19.
    Liu Y, Lu Z, Deng C, Ding J, Xu Y, Lu X, Yang G (2017) A novel LiCoPO4-coated core–shell structure for spinel LiNi0.5Mn1.5O4 as a high-performance cathode material for lithium-ion batteries. J Mater Chem A 5:996–1004CrossRefGoogle Scholar
  20. 20.
    Miao X, Ni H, Zhang H, Wang C, Fang J, Yang G (2014) Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery. J Power Sources 264:147–154CrossRefGoogle Scholar
  21. 21.
    Xu Y, Liu Y, Lu Z, Wang H, Sun D, Yang G (2016) The preparation and role of Li2ZrO3 surface coating LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion batteries. Appl Surf Sci 361:150–156CrossRefGoogle Scholar
  22. 22.
    Hwang I, Lee CW, Kim JC, Yoon S (2012) Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Mater Res Bull 47:73–78CrossRefGoogle Scholar
  23. 23.
    Li J, Yao R, Cao C (2014) LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. ACS Appl Mater Interfaces 6:5075–5082CrossRefGoogle Scholar
  24. 24.
    Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG (2010) Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater 22:4364–4367CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14:2849–2853CrossRefGoogle Scholar
  26. 26.
    Zhang L, Li N, Wu B, Xu H, Wang L, Yang XQ, Wu F (2015) Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable li-ion batteries. Nano Lett 15:656–661CrossRefGoogle Scholar
  27. 27.
    Zeng J, Cui Y, Qu D, Zhang Q, Wu J, Zhu X, Li Z, Zhang X (2016) Facile synthesis of platelike hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with exposed {010} planes for high-rate and long cycling-stable lithium ion batteries. ACS Appl Mater Interfaces 8:26082–26090CrossRefGoogle Scholar
  28. 28.
    Yu R, Zhang X, Liu T, Xu X, Huang Y, Wang G, Wang X, Shu H, Yang X (2017) Hierarchically structured lithium-rich layered oxide with exposed active {010} planes as high-rate capability cathode for lithium-ion batteries. ACS Sustain Chem Eng 5:8970–8981CrossRefGoogle Scholar
  29. 29.
    Wang Z, Liu H, Wu J, Lau WM, Mei J, Liu H, Liu GB (2016) Hierarchical LiNi0.8Co0.15Al0.05O2 plates with exposed {010} active planes as a high performance cathode material for Li-ion batteries. RSC Adv 6:32365–32369CrossRefGoogle Scholar
  30. 30.
    Tian J, Su Y, Wu F, Xu S, Chen F, Chen R, Li Q, Li J, Sun F, Chen S (2016) High-rate and cycling-stable nickel-rich cathode materials with enhanced Li+ diffusion pathway. ACS Appl Mater Interfaces 8:582–587CrossRefGoogle Scholar
  31. 31.
    Yang CK, Qi LY, Zuo Z, Wang RN, Ye M, Lu J, Zhou HH (2016) Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ion cathodes. J Power Sources 331:487–494CrossRefGoogle Scholar
  32. 32.
    Ruan Z, Zhu Y, Teng X (2015) Effect of pre-thermal treatment on the lithium storage performance of LiNi0.8Co0.15Al0.05O2. J Mater Sci 51:1400–1408CrossRefGoogle Scholar
  33. 33.
    Wu N, Zhang Y, Guo Y, Liu S, Liu H, Wu H (2016) Flakelike LiCoO2 with exposed {010} facets as a stable cathode material for highly reversible lithium storage. ACS Appl Mater Interfaces 8:2723–2731CrossRefGoogle Scholar
  34. 34.
    Makimura Y, Sasaki T, Nonaka T, Nishimura YF, Uyama T, Okuda C, Itou Y, Takeuchi Y (2016) Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries. J Mater Chem A 4:8350–8358CrossRefGoogle Scholar
  35. 35.
    Fu F, Xu GL, Wang Q, Deng YP, Li X, Li JT, Huang L, Sun SG (2013) Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery. J Mater Chem A 1:3860CrossRefGoogle Scholar
  36. 36.
    Xiao X, Yang L, Zhao H, Hu Z, Li Y (2011) Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res 5:27–32CrossRefGoogle Scholar
  37. 37.
    Yuan J, Wen J, Zhang J, Chen D, Zhang D (2017) Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries. Electrochim Acta 230:116–122CrossRefGoogle Scholar
  38. 38.
    Zhao J, Zhang W, Huq A, Misture ST, Zhang B, Guo S, Wu L, Zhu Y, Chen Z, Amine K, Pan F, Bai J, Wang F (2017) In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Adv Energy Mater 7:1601266CrossRefGoogle Scholar
  39. 39.
    Chen L, Su Y, Chen S, Li N, Bao L, Li W, Wang Z, Wang M, Wu F (2014) Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries. Adv Mater 26:6756–6760CrossRefGoogle Scholar
  40. 40.
    Zhou YH, Wang Y, Li SM, Mei J, Liu H, Liu H, Liu GB (2017) Irregular micro-sized Li1.2Mn0.54Ni0.13Co0.13O2 particles as cathode material with a high volumetric capacity for Li-ion batteries. J Alloys Compd 695:2951–2958CrossRefGoogle Scholar
  41. 41.
    Wu N, Wu H, Yuan W, Liu S, Liao J, Zhang Y (2015) Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A 3:13648–13652CrossRefGoogle Scholar
  42. 42.
    Kim J, Cho H, Jeong HY, Ma H, Lee J, Wang HJ, Park M, Cho J (2017) Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries. Adv Energy Mater 7:1602559CrossRefGoogle Scholar
  43. 43.
    Zou Y, Yang X, Lv C, Liu T, Xia Y, Shang L, Waterhouse GI, Yang D, Zhang T (2017) Multishelled Ni-rich li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for li-ion batteries. Adv Sci 4:1600262CrossRefGoogle Scholar
  44. 44.
    Rho YH, Kanamura K (2003) Fabrication of thin film electrodes for all solid state rechargeable lithium batteries. J Electroanal Chem 559:69–75CrossRefGoogle Scholar
  45. 45.
    Liu Y, Mi C, Yuan C, Zhang X (2009) Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2. J Electroanal Chem 628:73–80CrossRefGoogle Scholar
  46. 46.
    Hua N, Wang C, Kang X, Wumair T, Han Y (2010) Studies of V doping for the LiFePO4-based Li ion batteries. J Alloys Compd 503:204–208CrossRefGoogle Scholar
  47. 47.
    Liu S, Yin H, Wang H, He J (2013) Electrochemical performance of WO2 modified LiFePO4/C cathode material for lithium-ion batteries. J Alloys Compd 561:129–134CrossRefGoogle Scholar
  48. 48.
    Zhang Q, Peng T, Zhan D, Hu X (2014) Synthesis and electrochemical property of xLi2MnO3·(1−x)LiMnO2 composite cathode materials derived from partially reduced Li2MnO3. J Power Sources 250:40–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina
  2. 2.Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and TechnologyChina Academy of Engineering PhysicsChengduChina

Personalised recommendations