, Volume 25, Issue 3, pp 1123–1130 | Cite as

Ionic switch using nano-channels in polymeric membrane

  • Sangeeta Negi
  • Amita ChandraEmail author
Original Paper


A synthetic ion-transporting structure has been created using irradiated etched polymeric membrane to mimic natural systems like neurons. Considering the challenges involving the complexity in ion selectivity and opening/closing of channels in non-natural systems, efficient sodium and potassium ions’ transport through ion channels using voltage-gated channels is being presented. Cation selective nature, well-defined geometries, easy modification, and compatibility with different electronic and optical measurement techniques are some of the reasons which make ion channels in polyethylene terephthalate membrane the most appropriate choice for such channels. The applied voltage stimulus facilitates the transport of ions of the aqueous electrolytes and provides the direction to their flow. These ion channels in polymeric membranes behave as potassium ion channels in a particular applied voltage range and as sodium ion channels, in another voltage range. With applied voltage, these channels switch between high and low conduction states referred to as opening and closing. The opening time is referred to as the “event time” for the transportation of ions through ion channels. Event time for potassium and sodium channels varies with the applied voltage. Statistical interaction of ion channels affects the event time (opening/closing) of the ion channels.


Nano-channels Sodium channels Potassium channels Switching 



The authors are grateful to Dr. D. Fink and the operators at the Helmholtz Centre for Materials and Energy, Berlin, for irradiation of the samples.

Funding information

This study received financial support from the University of Delhi and DST (Govt. of India).


  1. 1.
    Cooper MG, Hausman ER (2000) The cell—a molecular approach. Sinauer associates, SunderlandGoogle Scholar
  2. 2.
    Hille B (2001) Ion channels of excitable membranes. Sinauer associates, SunderlandGoogle Scholar
  3. 3.
    Ashcroft ME (1999) Ion channel and disease. Academic press, New YorkGoogle Scholar
  4. 4.
    Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166–169CrossRefGoogle Scholar
  5. 5.
    Heng JB, Ho C, Kim T, Timp R, Aksimentiev A, Grinkova YV, Sligar S, Schulten K, Timp G (2004) Sizing DNA using a nanometer-diameter pore. Biophys J 87:2905–2911CrossRefGoogle Scholar
  6. 6.
    Haque F, Li J, Wu HC, Liang JX, Peixuan G (2013) Solid state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 8:56–74CrossRefGoogle Scholar
  7. 7.
    Wei R, Pedone D, Zürner A, Döblinger M, Rant U (2010) Nanopores: fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. Small 6:1406–1414CrossRefGoogle Scholar
  8. 8.
    Kowalczyk SW, Blosser TR, Dekker C (2011) Biomimetic nanopores: learning from and about nature. Trends Biotechnol 29:607–614CrossRefGoogle Scholar
  9. 9.
    Krapf D, Wu MY, Smeets RM, Zandbergen HW, Dekker C, Lemay SG (2006) Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett 6:105–109CrossRefGoogle Scholar
  10. 10.
    Hall AR, Scott A, Rotem D, Mehta KK, Bayley H, Dekker C (2010) Hybrid pore formation by directed insertion of alpha hemolysin into solid-state nanopores. Nat Nanotechnol 5(12):874–877CrossRefGoogle Scholar
  11. 11.
    Storm AJ, Storm C, Chen J, Zandbergen H, Joanny JF, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5:1193–1197CrossRefGoogle Scholar
  12. 12.
    Rawat S, Fink D, Chandra A (2010) Study of ferrofluids in confined geometry. J Colloid Interface Sci 350:51–57CrossRefGoogle Scholar
  13. 13.
    Rawat S, Chandra A (2010) Study of surface morphology of ferrofluid deposited etched ion tracks in dielectric layers. Radiat Meas 45:844–849CrossRefGoogle Scholar
  14. 14.
    Rawat S, Chandra A (2011) I–V behavior of transition metal oxides nanoparticles confined in ion tracks. J Nanopart Res 13:5265–5273CrossRefGoogle Scholar
  15. 15.
    Storm AJ, Chen JH, Ling XS, Zandergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540CrossRefGoogle Scholar
  16. 16.
    Park SR, Peng HB, Ling XS (2007) Fabrication of nanopores in silicon chips using feedback chemical etching. Small 3:116–119CrossRefGoogle Scholar
  17. 17.
    Reber N, Küchel A, Spohr R, Wolf A, Yoshida M (2001) Transport properties of thermo-responsive ion track membranes. J Membr Sci 193:49–51CrossRefGoogle Scholar
  18. 18.
    Innes L, Powell RM, Vlassiouk I, Martens C, Siwy SZ (2010) Precipitation-induced voltage-dependent ion current fluctuations in conical nanopores. J Phys Chem C 114:8126–8134CrossRefGoogle Scholar
  19. 19.
    Spohr R (1983) Methods and device to generate a predetermined number of ion tracks. German Patent DE 2951376 C2, U S Patent. No. 4369370Google Scholar
  20. 20.
    Rawat S, Saha B, Prasad A, Chandra A (2012) Chaotic behavior of ion exchange phenomena in polymer gel electrolytes through irradiated polymeric membrane. Phys Lett A 376:1915–1918CrossRefGoogle Scholar
  21. 21.
    Eguizábal A, Sgroi M, Pullini D, Ferain E, Pina PM (2014) Nanoporous PBI membranes by track etching for high temperature PEMs. J Membr Sci 454:243–252CrossRefGoogle Scholar
  22. 22.
    Fink D (2013) Fundamentals of ion irradiated polymers. Springer series in Material Science, Germany.Google Scholar
  23. 23.
    Gamble T, Decker K, Plett ST, Pevarnik M, Pietschmann FJ, Vlassiouk I, Aksimentiev A, Siwy SZ (2014) Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling. J Phys Chem C 118:9809–9819CrossRefGoogle Scholar
  24. 24.
    Gamby J, Delapierre DF, Pallandre A, Tribollet B, Deslouis C, Haghiri GMA (2016) Dielectric properties of a single nanochannel investigated by high-frequency impedance spectroscopy. Electrochem Commun 66:5–9CrossRefGoogle Scholar
  25. 25.
    Hylland B, Siwy SZ, Martens C (2015) Nanopore current oscillations: nonlinear dynamics on the nanoscale. J Phys Chem Lett 6:1800–1806CrossRefGoogle Scholar
  26. 26.
    Siwy SZ, Heins E, Harrell CC, Kohli P, Martin RC (2004) Conical-nanotube ion-current rectifiers: the role of surface charge. J Am Chem Soc 126:10850–10851CrossRefGoogle Scholar
  27. 27.
    Bezrukov MS, Vodyanoy I, Parsegian AV (1994) Counting polymers moving through a single ion channel. Nature 370:279–281CrossRefGoogle Scholar
  28. 28.
    Shen XY, Saboe OP, Sines TI, Erbakan M, Kumar M (2014) Biomimetic membranes: a review. J Membr Sci 454:359–381CrossRefGoogle Scholar
  29. 29.
    Eduardo R, Chu C, Schulten K (2010) Computational microscopy of the role of protonable surface residues in nanoprecipitation oscillations. ACS Nano 4:4463–4474CrossRefGoogle Scholar
  30. 30.
    Alfonta L, Bukelman O, Chandra A, Fahrner RW, Fink D, Fuks D, Golovanov V, Hnatowicz V, Hoppe K, Kiv A, Klinkovich I, Landau M, Morante JR, Tkachenko NV, Vacíke J, Valden M (2009) Strategies towards advanced ion track-based biosensors. Rad Effects and Defects in Solids 164:431–437CrossRefGoogle Scholar
  31. 31.
    Francisco B (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 2:555–592Google Scholar
  32. 32.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter KP (2002) Ion channels and the electrical properties of membranes. Molecular Biology of the Cell, New York.Google Scholar
  33. 33.
    Tagliazucchi M, Szleifer I (2015) Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater Today 18:131–142CrossRefGoogle Scholar
  34. 34.
    Wen L, Jiang J (2014) Construction of biomimetic smart nanochannels for confined water. Nat Sci Rev 1:144–156CrossRefGoogle Scholar
  35. 35.
    Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg SR, Siwy SZ (2008) Nanoprecipitation-assisted ion current oscillations. Nat Nanotechnol 3:51–57CrossRefGoogle Scholar
  36. 36.
    Siwy SZ, Fulin A (2002) Fabrication of a synthetic nanopore ion pump. Phys Rev Lett 89:198103–1981-4CrossRefGoogle Scholar
  37. 37.
    Eduardo R, Chu C, Ritz T, Siwy SZ, Schulte K (2009) Molecular control of ionic conduction in polymer nanopores. Faraday Discuss 143:47–93CrossRefGoogle Scholar
  38. 38.
    Gillespie D, Boda D, He Y, Apel P, Siwy SZ (2008) Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys J 15:609–619CrossRefGoogle Scholar
  39. 39.
    Wang X, Lv P, Zou H, Li Y, Li X, Liao Y (2016) Synthesis of poly (2-aminothiazole) for selective removal of hg(ii) in aqueous solutions. Ind Eng Chem Res 55:4911–4918CrossRefGoogle Scholar
  40. 40.
    Wu W, Li Y, Liu J, Wang J, He Y, Davey K, Qiao ZS (2018) Molecular-level hybridization of nafion with quantum dots for highly enhanced proton conduction. Adv Mater 30:1707516 –1–7CrossRefGoogle Scholar
  41. 41.
    Wu W, Li Y, Chen P, Liu J, Wang J, Zhang H (2016) Constructing ionic liquid-filled proton transfer channels within nanocomposite membrane by using functionalized graphene oxide. ACS Appl Mater Interfaces 8:588–599CrossRefGoogle Scholar
  42. 42.
    Fink D, Kiv A, Shunin Y, Mykytenko N, Shunina TL, Mansharipova A, Koycheva T, Muhamediev R, Gopeyenko V, Burlutskaya N, Zhukovskii Y, Bellucci S (2015) The nature of oscillations of ion currents in the ion track electronics. Computer Modelling & New Technologies 19:7–13Google Scholar
  43. 43.
    Lev AA, Korchev YE, Rostovtseva KT, Bashford LC, Edmonds TD, Pasternak AC (1993) Rapid switching of ion current in narrow pores: implications for biological ion channels. Proc R Soc Lond B 252:187–192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations