, Volume 25, Issue 1, pp 231–239 | Cite as

1-Ethyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid mixture as electrolyte for high-voltage supercapacitors

  • Qingguo ZhangEmail author
  • Huige Yang
  • Xiaoshi Lang
  • Xinyuan Zhang
  • Ying WeiEmail author
Original Paper


A novel ionic liquid (IL) 1-ethyl-2,3-dimethylimidazolium tetrafluoroborate ([Emmim][BF4]) with trialkyl substitution imidazolium cation was synthesized, and its binary system blended with acetonitrile (ACN) under different concentrations were prepared and investigated as possible electrolytes for supercapacitors. The physico-chemical properties such as density, viscosity, and electrical conductivity of the binary mixture system were measured from 288.15 to 333.15 K. The temperature dependences of density, viscosity, and electrical conductivity were illustrated and discussed by the Vogel-Fulcher-Tamman (VFT) equation and Arrhenius equation. It was found that the VFT equation was more suitable to [Emmim][BF4] + ACN system. Further, the important characteristics of this IL-based electrolyte for supercapacitors including the maximum operative voltage, the capacitance, the energy density, and power density were measured and calculated by cyclic voltammetry (CV), electrochemical impedance spectrum (EIS), and galvanostatic charge-discharge. The results show that the performance of the electrolyte can be improved with appropriate ratio of IL. When the concentration of the IL increased to 0.8 mol L−1, the maximum operative voltage increased to 5.9 V, and the specific capacitance achieves 142.6 F g−1. It shows the IL-based mixtures with excellent characteristics are applicable as high-voltage electrolytes for supercapacitors.


Ionic liquid Electrolyte Supercapacitor Thermodynamic property Electrochemical performance 


Funding information

This work was financially supported by the National Nature Science Foundation of China (no. 21503020, no. 21373002). The Nature Science Foundation of Liaoning Province (no. 201602016). The Doctoral Fund of Liaoning Province of China (no. 201601347). Program for Liaoning Excellent Talents in University, China (LJQ2015099). Project of Education Department of Liaoning Province of China (no. LQ2017014).

Supplementary material

11581_2018_2591_MOESM1_ESM.pdf (376 kb)
ESM 1 (PDF 376 kb)


  1. 1.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  2. 2.
    Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRefGoogle Scholar
  3. 3.
    Hashmi SA, Updahyaya HM (2002) MnO2-polypyrrole conducting polymer composite electrodes for electrochemical redox supercapacitors. Ionics 8:272–277CrossRefGoogle Scholar
  4. 4.
    Liu S, Dong HF, Du JP, Qin XJ, Shao GJ (2014) MnO2/graphite electrodeposited under supergravity field for supercapacitors and its electrochemical properties. Ionics 20:295–299CrossRefGoogle Scholar
  5. 5.
    Huang GY, Zhang WJ, Xu SM, Li YJ, Yang Y (2016) Microspherical ZnO synthesized from a metal-organic precursor for supercapacitors. Ionics 22:2169–2174CrossRefGoogle Scholar
  6. 6.
    Portet C, Yushin G, Gogotsi Y (2008) Effect of carbon particle size on electrochemical performance of EDLC. J Electrochem Soc 155:A531–A536CrossRefGoogle Scholar
  7. 7.
    Xu B, Wu F, Chen R, Cao G, Chen S, Zhou Z, Yang Y (2008) Highly mesoporous and high surface area carbon: a high capacitance electrode material for EDLCs with various electrolytes. Electrochem Commun 10:795–797CrossRefGoogle Scholar
  8. 8.
    Frackowiak E, Lota G, Machnikowski J, Vix-Guterl C, Beguin F (2006) Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim Acta 51:2209–2214CrossRefGoogle Scholar
  9. 9.
    Conway BE (1999) Electrochemical capacitors. Kluwer Academic Plenum Publisher, New YorkGoogle Scholar
  10. 10.
    Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49:905–912CrossRefGoogle Scholar
  11. 11.
    Perricone E, Chamas M, Leprêtre JC, Judeinstein P, Azais P, Raymundo-Pinero E, Béguin F, Alloin F (2013) Safe and performant electrolytes for supercapacitor. Investigation of esters/carbonate mixtures. J Power Sources 239:217–224CrossRefGoogle Scholar
  12. 12.
    Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C (2013) Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). J Mater Chem A 1:6037–6042CrossRefGoogle Scholar
  13. 13.
    Weingarth D, Noh H, Foelske-Schmitz A, Wokaun R, Kötz A (2013) A reliable determination method of stability limits for electrochemical double layer capacitors. Electrochim Acta 103:119–124CrossRefGoogle Scholar
  14. 14.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  15. 15.
    Denshchikov KK, Izmaylova MY, Zhuk AZ, Vygodskii YS, Novikov VT, Gerasimov AF (2010) 1-Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors. Electrochim Acta 55:7506–7510CrossRefGoogle Scholar
  16. 16.
    Arbizzani C, Biso M, Cericola D, Lazzari M, Soavi F, Mastragostino M (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579CrossRefGoogle Scholar
  17. 17.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Supercapacitors: carbons and electrolytes for advanced supercapacitors (Adv. Mater. 14/2014). Adv Mater 26:2283–2283CrossRefGoogle Scholar
  18. 18.
    Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580CrossRefGoogle Scholar
  19. 19.
    Lazzari M, Mastragostino M, Soavi F (2007) Capacitance response of carbons in solvent-free ionic liquid electrolytes. Electrochem Commun 9:1567–1572CrossRefGoogle Scholar
  20. 20.
    Lazzari M, Soavi F, Mastragostino M (2008) High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes. J Power Sources 178:490–496CrossRefGoogle Scholar
  21. 21.
    Mastragostino M, Soavi F (2007) Strategies for high-performance supercapacitors for HEV. J Power Sources 174:89–93CrossRefGoogle Scholar
  22. 22.
    Tanahashi I, Yoshida A, Nishino A (1990) Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors. J Electrochem Soc 137:3052–3057CrossRefGoogle Scholar
  23. 23.
    Brandt A, Ramirez-Castro C, Anouti M, Balducci A (2013) An investigation about the use of mixtures of sulfonium-based ionic liquids and propylene carbonate as electrolytes for supercapacitors. J Mater Chem A 1:12669–12678CrossRefGoogle Scholar
  24. 24.
    Schütter C, Neale AR, Wilde P, Goodrich P, Hardacre C, Passerini S, Jacquemin J, Balducci A (2016) The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis {(trifluoromethyl) sulfonyl} imide and aliphatic nitrile solvents as electrolyte for supercapacitors. Electrochim Acta 220:146–155CrossRefGoogle Scholar
  25. 25.
    Huang PL, Luo XF, Peng YY, Pu NW, Ger MD, Yang CH, Wu TY, Chang JK (2015) Ionic liquid electrolytes with various constituent ions for grapheme based supercapacitors. Electrochim Acta 161:371–377CrossRefGoogle Scholar
  26. 26.
    Zhang QG, Li MC, Zhang XY, Wu XY (2014) The thermodynamic estimation and viscosity, electrical conductivity characteristics of 1-alkyl-3-methylimidazolium thiocyanate ionic liquids. Z Phys Chem 228:851–867Google Scholar
  27. 27.
    Zhang QG, Lan YL, Liu HW, Zhang XY, Zhang XL, Wei Y (2016) Estimation and structural effect on physicochemical properties of alkylimidazolium-based ionic liquids with different anions. J Chem Eng Data 61:2002–2012CrossRefGoogle Scholar
  28. 28.
    Liu CY, Ma XD, Xu F, Zheng LP, Zhang H, Feng WF, Huang XJ, Armand M, Nie J, Chen HL, Zhou ZB (2014) Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-methy-N-propylpiperidiniumbis (fluorosulfonyl)imide for Li/natural graphite cells: effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim Acta 149:370–385CrossRefGoogle Scholar
  29. 29.
    Wang B, Al Abdulla W, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875CrossRefGoogle Scholar
  30. 30.
    Wang B, Xie Y, Liu T, Luo H, Wang B, Wang CH, Wang L, Wang DL, Dou SX, Zhou Y (2017) LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy 42:363–372CrossRefGoogle Scholar
  31. 31.
    Wang B, Liu T, Liu A, Liu GJ, Wang L, Gao TT, Wang DL, Zhao XS (2016) A hierarchical porous C@ LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater 6:1-10(1600426).
  32. 32.
    Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material's performance for ultracapacitors. Energy Environ Sci 3:1294–1301CrossRefGoogle Scholar
  33. 33.
    Wei Y, Wang B, Zhao Z, Zhang XY, Wu XY, Zhang QG (2015) Estimation of physico-chemical properties and structure characteristics of new alkylimidazolium salicylate ionic liquids. Z Phys Chem 230:1165–1183Google Scholar
  34. 34.
    Rocha MAA, Coutinho JAP, Santos LMNBF (2013) Evidence of nanostructuration from the heat capacities of the 1,3-dialkylimidazolium bis(Trifluoromethylsulfonyl)imide ionic liquid series. J Chem Phys 139:104502CrossRefGoogle Scholar
  35. 35.
    Ciocirlan O, Iulian O (2012) Properties of pure 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid and its binary mixtures with dimethyl sulfoxide and acetonitrile. J Chem Eng Data 57:3142–3148CrossRefGoogle Scholar
  36. 36.
    Zhang QG, Sun SS, Pitula S, Liu QS, Welz-Biermann U, Zhang GG (2011) Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate. J Chem Eng Data 56:4659–4664CrossRefGoogle Scholar
  37. 37.
    Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903CrossRefGoogle Scholar
  38. 38.
    Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly(methyl methacrylate)-C4BO8Li gel polymerelectrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45CrossRefGoogle Scholar
  39. 39.
    DeRosa D, Higashiya S, Schulz A, Fondacaro MR, Haldar P (2017) High performance spiro ammonium electrolyte for electric double layer capacitor. J Power Sources 360:41–47CrossRefGoogle Scholar
  40. 40.
    Kang J, Wen J, Jayaram SH, Yu A, Wang X (2014) Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes. Electrochim Acta 115:587–598CrossRefGoogle Scholar
  41. 41.
    Liu W, Yan X, Lang J, Xue Q (2011) Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains. J Mater Chem 21:13205–13212CrossRefGoogle Scholar
  42. 42.
    Tõnurist K, Thomberg T, Jänes A, Romann T, Sammelselg V, Lust E (2013) Influence of separator properties on electrochemical performance of electrical double-layer capacitors. J Electroanal Chem 689:8–20CrossRefGoogle Scholar
  43. 43.
    Härk E, Nerut J, Vaarmets K, Tallo I, Kurig H, Eskusson J, Kontturi K, Lust E (2013) Electrochemical impedance characteristics and electroreduction of oxygen at tungsten carbide derived micromesoporous carbon electrodes. J Electroanal Chem 689:176–184CrossRefGoogle Scholar
  44. 44.
    Lust E, Jänes A, Sammelselg V, Miidla P, Lust K (1998) Surface roughness of bismuth, antimony and cadmium electrodes. Electrochim Acta 43:373–383CrossRefGoogle Scholar
  45. 45.
    Lust E, Jänes A, Sammelselg V, Miidla P (2000) Influence of charge density and electrolyte concentration on the electrical double layer characteristics at rough cadmium electrodes. Electrochim Acta 46:185–191CrossRefGoogle Scholar
  46. 46.
    Lust E, Jänes A, Lust K, Sammelselg V, Miidla P (1997) Influence of surface pretreatment of bismuth and cadmium electrodes to the electric double layer and adsorption characteristics of organic compounds. Electrochim Acta 42:2861–2879CrossRefGoogle Scholar
  47. 47.
    Cheng F, Yu X, Wang J, Shi ZQ, W C C (2016) A novel supercapacitor electrolyte of spiro-(1, 1′)-bipyrolidinium tetrafluoroborate in acetonitrile/dibutyl carbonate mixed solvents for ultra-low temperature applications. Electrochim Acta 200:106–114CrossRefGoogle Scholar
  48. 48.
    Anouti M, Timperman L (2013) A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors. Phys Chem Chem Phys 15:6539–6548CrossRefGoogle Scholar
  49. 49.
    Vaquero S, Palma J, Anderson M, Marcilla R (2013) Improving performance of electric double layer capacitors with a mixture of ionic liquid and acetonitrile as the electrolyte by using mass-balancing carbon electrodes. J Electrochem Soc 160:A2064–A2069CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of New EnergyBohai UniversityJinzhouChina
  2. 2.College of Chemistry and Chemical EngineeringBohai UniversityJinzhouChina

Personalised recommendations